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Abstract

The soil iron cycle has a multi-faceted role in the soil carbon cycle affecting carbon

emissions across the globe. The drivers of the iron cycle or “ferrous wheel” are fluctu-

ating redox conditions caused by changes in soil moisture. Soil moisture may change

due to stochastic inputs (rainfall) or deterministic events (irrigation) over hours or

over months. Various aspects of the soil iron cycle have been studied from a microbi-

ological or geochemical perspective, but modeling the macroscopic effects of the cycle

remains a challenge [22, 36, 118]. Two of the most critical mechanisms in which iron

affects soil carbon storage are (I) the protection of carbon by iron oxides and (II)

the oxidation of carbon with iron as an electron acceptor. These two effects have not

yet been explicitly modeled together. Furthermore, many studies are limited to the

effect of constant length redox cycles, and the effect of stochastic fluctuations of soil

moisture has not been thoroughly explored [21, 22, 124]. The objective of this thesis

is to investigate how the coupled water-iron-carbon cycles behave under different con-

ditions and how these interactions affect carbon emissions. To tackle this open ended

question, this thesis develops a first pass model at capturing these dynamics. The

model is divided into two components: (I) a numerical model that includes carbon

protection and carbon oxidation by iron reduction, and (II) a simplified model of the

iron cycle driven by stochastic soil moisture fluctuations. Through simulations, the

numerical model demonstrates that different initial conditions and rates of reduction

can alter the net effect (positive or negative) of iron on carbon emissions. From the

stochastic model a probability density function was derived of the fraction of iron that

is reduced in a fluctuating redox environment. This function has broad applicability

to both carbon dynamics and iron properties of the soil. Overall the models progress

the current state of modeling the iron and carbon cycles and connect existing concep-

tions to a mathematical modeling framework, an important step for predicting soil

carbon dynamics under climate change.
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Chapter 1

Introduction

1.1 Motivation

Together, iron and carbon make steel, a substance that is stronger than the sum of

its parts, a non-linear interaction. In soil, iron and carbon also interact in non-linear

ways, affecting the decomposition of carbon into the critical greenhouse gases carbon

dioxide and methane [36, 64, 77, 125, 139, 141]. The soil iron cycle or “ferrous wheel”

(term first coined by Glusker 1968 in a different context [47]) is driven by redox

conditions which are determined by hydrologic forcings (precipitation, irrigation, or

flooding) [22, 88, 97, 124, 134, 145]. The soil, critical to humanity as a major store of

organic carbon in the form of soil organic matter (SOM), encompasses an estimated

1400 to 2400 Gt of carbon stored in the soil, with an additional 1700 Gt stored in

permafrost [73]. The nature of SOM and the factors that determine how long it

remains in the soil are critical to modeling future carbon dioxide (CO2) and methane

(CH4) fluxes [6, 39, 65, 67, 142].

In the past two decades, mineral protection of carbon, i.e. carbon physically or

chemically attached to minerals such that it is unavailable for microbial decomposi-

tion, has been recognized as a critical factor in slowing SOM decomposition [32, 45,
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53, 64, 66, 67, 69, 81, 101, 138, 139, 143]. In order to predict how SOM will respond

to climate change, accurate models must be developed that consider relevant effects

such as how mineral protection interacts with land use and precipitation changes [32,

53, 65, 69, 81, 123, 137, 138]. Iron oxides (including oxihdyroxides and hydroxides)

are minerals abundant in most soils and have the capacity to protect SOM from de-

composition [31, 66, 101]. When conditions are anoxic, as in flooded soils, iron oxides

are preferentially reduced (gain an electron) by microbes in order to oxidize organic

carbon (which loses an electron) into CO2 [78, 128]. Hence, iron acts as both an in-

hibitor and a crucial component of carbon decomposition, but its net impact depends

on a suite of complex dynamics that are driven by fluctuations in soil moisture [25,

36, 118, 124, 133]. The motivation behind this thesis is to untangle how hydrological

forcings, such as flooding, draining, and random rainfall, affect the iron carbon cycles

in soil. Understanding these dynamics mathematically is critical to improving models

and predictions of the fate of SOM under climate change, which is expected to alter

precipitation patterns across the globe [68].

1.2 Approach

The importance of SOM for agriculture has been known for millennia and studied

scientifically for over a century [131, 132]. This has lead to the development of dif-

ferent theories and a plethora of models to represent SOM decomposition in the soil,

many involving hydrology, microbial populations, and nutrient dynamics (e.g. nitro-

gen) [84]. Iron and its transformations have also been studied extensively in the soil

but largely from a mechanistic point of view, looking at specific processes related to

microbiology or geochemistry [19, 46, 79, 107, 108]. Large, complex soil geochemical

models can successfully capture iron and carbon cycles, but their complexity makes

it difficult to determine fundamental relationships between key variables [21, 110,
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122]. Seeking to better understand these core relationships, Calabrese and Porporato

(2019) developed a simple model of the coupled iron carbon cycle driven by hydrolog-

ical fluctuations to parsimoniously model iron reduction and microbial dynamics [22].

Chapter 3 expands on this model, including the role of mineral-associated organic

matter (MAOM or mineral-associated organic carbon MAOC). MAOM is protected

from microbial decomposition, but may be released if the protecting mineral under-

goes dissimilatory reduction [23]. The addition of this pool allows for the contrasting

dynamics of iron as a protector and enabler of SOM decomposition to be explored

mathematically, which as far as can be determined has not been done before [23, 88,

93, 118, 124, 135, 145].

The availability of iron to protect SOM, oxidize SOM, percolate out of the soil,

and be uptaken by plants is dependent on whether its state is reduced (Fe2+) or

oxidized (Fe3+) [21, 28, 118, 147]. Thus, the fraction of time iron spends in each

of these states is informative for a variety of ecological, mineralogical, and carbon

related purposes. Calabrese et al. (2020) built on their aforementioned work [22]

by reducing the model to just consider hydrological variables and the fraction of iron

that is oxidized or reduced [21]. Chapter 4 of this thesis extends that simplified model

by including the impacts of stochastic rainfall. Stochasticity, or randomness, from

external forcings has non-linear impacts on a variety of environmental systems when

the noise is multiplicative, as it is in this system [99, 102]. By using a simplified model,

the probability density function of the state of iron can be found analytically as a

function of soil and climatological parameters. The analytical functions are useful

(in comparison to numerical simulations) by identifying fundamental relations and

tipping points from environmental variables. This ultimately can be used to assess

how changing precipitation regimes will interact with iron to affect carbon emissions

and iron availability in soil.
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1.3 The Challenges of Environmental Models

It would be a failure of due diligence to not discuss, in practical terms, the limitations

and plausible objectives of this thesis. The goal of environmental models is generally

to best approximate a complex, open system whose true nature is unknowable in

its entirety [13]. There are many choices made in modeling, including assumptions,

structure of the model, boundary conditions, loss functions/fitting methods, the scale

of processes represented, etc. A challenge for many environmental models is equi-

finality, the phenomenon wherein different sets of boundary conditions, parameters,

or model structures fit available data equally well [13, 14]. Ideally, equifinality is

addressed with some method that deals with the probabilities of different parameter

and model formulations using a large data set, for instance the generalized likelihood

uncertainty estimation (GLUE) [15]. An attempt to model the biogeochemical soil

system for the sake of prediction is beyond the scope of this thesis and would require

a large, complex model that is itself only a macroscopic approximation of reality.

Rather, the goal of this thesis is to illuminate the different known mechanisms into

a formal model to determine the mathematical relations between variables and their

implications for climate change and future modeling endeavors. That is to say, this

thesis is not a large-scale data assimilation project to fit models and estimate param-

eters, but instead aims to examine the effect of different parameters on the iron and

carbon cycles via simple, explainable models. Specifically, the models developed can

give an idea of what types of conditions/parameterizations will lead to what possible

range of outcomes. The parameters in question are (1) the initial conditions and

inputs into the system of carbon and iron, and (2) the rates of processes, including

the rate of reduction, the rate of oxidation, the rate of decomposition, and rate of

switching between oxic and anoxic conditions.
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Chapter 2

Literature Review

2.1 The soil carbon cycle

The soil carbon cycle begins when organic matter enters the soil through plant root

turnover, root exudates, or above-ground deposition from plants or animals [32, 132].

Once in the soil, it can be considered SOM and is further decomposed by fungi,

earthworms, microbes, and other decomposers [32, 132]. During decomposition, de-

composers oxidize SOM into mineral products (e.g. CO2) which are respired into

the atmosphere. This energetically-favourable reaction is the source of energy for the

decomposers. Not all SOM is decomposed directly into carbon dioxide; some become

decomposer biomass, while others remain in the soil as SOM in a slightly altered

form [132]. When decomposers die, their necromass becomes SOM available for de-

composition [97]. SOM inputs into soil have a wide range of chemical and structural

properties which influence the time they take to be decomposed in the soil [82]. Soil

properties, such as mineral content, clay content, and microbial populations, also

play an important role in SOM decay [101]. The rate of SOM decomposition and the

factors that affect it are critical determiners of the net flux of carbon in and out of

the soil.
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2.1.1 Redox Potential and Decomposition

In the soil, microbes mediate the transfer of electrons from an electron donor (reduc-

tant or reducer) to an electron acceptor (oxidant or oxidizer), then trap the energy

produced from this favourable reaction [12]. The redox potential of a solution de-

termines how favorable the redox reaction is, and thus whether or not microbes will

carry it out. The redox potential of an aqueous solution is highly correlated to its con-

centration of oxygen gas (O2). During reactions in oxic conditions (high O2), oxygen

is the dominant electron acceptor for the oxidation of organic matter into CO2 (aer-

obic respiration) [12, 111]. However, in soil near water saturation, oxygen is quickly

depleted because of its slow rate of diffusion through water [128]. This drastically low-

ers the redox potential of the soil and causes other oxidizers to be used by microbes.

These substitute oxidizers are typically used in order of decreasing redox potential,

but this can vary depending on their availability and the soil’s pH [12, 111, 128]. The

oxidants in the soil with the next-highest redox potential after oxygen are nitrate

(NO –
3 ), followed by manganese (Mn4+), iron (Fe3+), sulfate (SO 2–

4 ), and carbon diox-

ide (CO2), which is reduced to methane at very low redox potentials [12, 111, 128].

Due to the high availability of iron relative to nitrate and manganese, iron becomes

a significant oxidizer of SOM during anoxic conditions in many soils [41, 51, 78, 79].

During anoxic conditions, net respiration is usually assumed to decrease because the

lower availability of oxygen decreases the thermodynamic potential of decomposition

reactions [48, 76]. However, recently it has been observed that flooding increases rates

of respiration in some situations [23, 58, 76, 134, 135]. This counterintuitive result

suggests that other factors such as the availability of carbon to decomposers must be

considered alongside the thermodynamics of soil decomposition [125].
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2.1.2 Carbon Stabilization

SOM decays at vastly different rates. The majority of new inputs to the soil decay

quickly within a year or two, while other SOM can remain in the soil for decades

to millennia [33, 82]. Older carbon comprises the majority of SOM – the mean age

of SOM in the soil was estimated by Shi et al. 2020 to be 4, 830 ± 1, 730 years

[112]. Understanding the nature of this old, ‘recalcitrant’ carbon will greatly improve

predictions of soil carbon fluxes under a changing climate and could lead to improved

methods of increasing soil carbon storage via land management [32]. There are several

accepted mechanisms that contribute to the storage of carbon, but how they manifest

in reality, the relative importance of different processes, and how soil carbon will

respond to a changing climate are all critical open questions [32].

The dominant factors perceived to be influencing the rate of SOM decomposition

have changed dramatically in recent decades [32, 74, 82]. The accepted paradigm in

the 19th and most of the 20th centuries is that the chemical properties of some fraction

of SOM made it nearly completely resilient to decomposition [82, 131, 132]. This idea

has since been challenged, and a new conceptual model has emerged that considers

multiple factors including mineral association, physical accessibility, molecular size,

energy content, nutrient ratios, oxidation state, hydrophobicity, number of enzyme

steps necessary to degrade, diversity of substrates, and microbial conditions [49, 54,

65, 69, 74, 82, 119, 142]. As noted by [65], the classification of a phenomena, in

this case recalcitrant carbon, defines how it is modeled and addressed scientifically.

Since prior to the 21st century inherent chemical properties were considered the cause

of slow degradation, it was natural to classify SOM based on the degree of lability,

meaning how easy it is to decompose [82, 84]. Recently, models have been proposed

that centralize other forms of preservation. For instance, models by [138] and [81]

demonstrate how including a pool of carbon that is protected from decomposition
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by mineral association can produce observed behaviors. Other models, like those

of [142] and [87], show how network effects between a large array of microbes who

must invest in metabolism and a large diversity of carbon substrates can lead to

the preservation of some substrates. The shifting perception of the leading causes of

carbon preservation in the soil has lead to a new generation of models that reflect

these new ideas; of interest to us are the models pertaining to protection via mineral

association.

2.1.3 Mineral Association

While several mechanisms contribute to extending the residence time of carbon in

soils, abundant evidence suggests that mineral associations are a significant factor in

stabilizing organic carbon [32, 53, 66, 82, 139]. MAOM accounts for up to 91% of soil

carbon in some soils and has turnover times in the soil on average four times as long

as other SOM [66]. MAOM refers to SOM that is adsorbed to (chemically attached

to the exterior of) minerals or was coprecipitated with minerals in a metal-organic

complex [32, 66]. Mineral adsorption occurs when negatively-charged particles of or-

ganic matter interact with the positively-charged surface of minerals. Adsorption and

desorption often occur simultaneously at rates determined by the pH, concentration

of adsorbed particle in the solution, and strength of bonds formed [66]. Adsorp-

tion can be inner-sphere (specific), where polar covalent bonds form between the

SOM and mineral, or outer-sphere (non-specific), where long range bonds form but

the components remain independent [66]. Outer-sphere electrostatic forces are much

weaker than inner-sphere ones [66]. Unlike adsorption, which occurs on the surface

of already-formed crystals, coprecipitation occurs when dissolved metal cations in-

teract with organic matter to form complexes that then precipitate into the solid

phase [66, 89, 118]. During or soon after this process, more cations or organic matter

may adsorb to the coprecipitate, creating larger particles [66, 89]. The extent of ad-
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Figure 2.1: The ferrous wheel (Fe3+ ⇐⇒ Fe2+) and its interactions with a simplified
carbon cycle is shown. Orange arrows are processes that occur in oxic conditions, blue
arrows occur in anoxic conditions, and black arrows can occur in both. Cl is used to
represent labile, available organic carbon and CMA represents mineral associated organic
carbon.

sorption that can occur depends on the available surface area of minerals; however,

this limitation is not imposed on coprecipitates which allows for greater Fe-C ratios

[Mikutta 2014]. Adsorption is a well-studied process with many existing models to

describe its dynamics [96]. In contrast, coprecipitation is more complex and seems

to be highly dependent on initial ratios of metal to organic matter in the solution, so

there is no consistent model that captures the phenomena [66, 89]. While mineral as-

sociations reduce turnover times, it is not necessarily the case that specific MAOM is

static for long periods of time [66, 139]. Rather, mineral association is a dynamic pro-

cess wherein attached carbon may be continuously desorped and adsorbed, partially

transformed, or replaced by more strongly-charged organic matter [66, 139].
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2.2 The Iron Cycle

Iron, the fourth most abundant element in Earth’s crust, is a key player in soil

biogeochemical cycles [28, 31, 63]. Iron is most commonly found in soil in its ferrous

(Fe2+) or ferric (Fe2+) forms [31]. The dominant processes in the soil iron cycle are

oxidation and reduction. In oxic conditions (high O2 concentration), Fe
2+ is oxidized

to Fe3+, which then forms iron oxides and precipitates into the solid phase [28, 31].

In anoxic conditions (low O2 concentration), Fe3+ is microbially reduced to oxidize

SOM. In highly acidic conditions, chemical abiotic reduction can compete with rates

of biotic reduction, but in the pH range of most soils (pH > 4.5), biotic reduction

dominates [28, 79, 104]. The rates of oxidation and reduction can both vary by orders

of magnitude and depend on environmental conditions and the crystallinity of iron

oxides [28, 78, 79, 106, 121]. Iron is also an essential nutrient for all life, including

plants. Despite its abundance in most soils, the insolubility of Fe3+ makes it limiting

to plants, which can only uptake aqueous ions [28]. Fe2+ has a much higher solubility

than Fe3+; thus, the redox state of iron can control its availability to plants and

leeching from the soil [127].

The iron oxides (including iron oxyhydroxides, hydroxides, and oxides) are widespread

iron minerals that have societal (e.g. mining and pigments) and biogeochemical im-

portance (e.g. soil carbon and iron cycles) [31, 66]. The iron oxides are usually

formed with (Fe3+), but some like magnetite are composed of both Fe2+ and Fe3+ [31].

Short-range order, or poorly crystalline iron oxides such as ferrihydrite (α FeOOH),

are considered meta-stable and, if unperturbed, will transform into more crystalline

forms, such as geothite via Ostwald ripening [31, 92]. Poorly crystalline oxides have

a high specific surface area and thus a high sorptive capacity [28, 31]. Crystalline

iron oxides such as geothite (α FeOOH) and hematite (α Fe2O3) are more stable

and have a lower specific surface area [28, 31]. The properties of iron oxides are im-
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portant in the soil iron and carbon cycles because they affect the availability of iron

for microbial reduction and the oxides’ capacity to associate with SOM [28].

2.2.1 Iron Reduction in Soil

Microbial iron reduction sits at the interface of minerology, microbiology, and the

carbon cycle [28, 34, 36, 79, 106]. The rate of iron reduction can be influenced by pH,

redox potential, electron donors, physical protection, available surface area, electron

shuttles, and iron crystallinity [10, 18, 19, 22, 34, 52, 79, 105, 106, 108, 136]. A

study by Roden 2003 demonstrated that the thermodynamic stability (Gibbs free

energy) of the iron crystal was not the dominant control, but rather, the available

surface area of the iron oxide was more important (the significance of thermodynamics

has been debated, see [34]) [104]. Processes that decrease the available surface area

for reducing bacteria, such as the sorbing of Fe2+, decrease reduction rates [104,

106, 107]. As the reduction of iron oxides progresses, more Fe2+ is produced and

adsorbs, decreasing the available surface area and reducing reduction rates, leading to

a negative feedback loop [10, 107, 108]. If there is advective transport of aqueous Fe2+

out of the system, then desorption occurs, leading to the elimination of this feedback

loop [107, 108]. However, the formation of secondary minerals with the sorbed Fe2+,

such as magnetite, complicates this relationship and can reduce reduction rates even

under flow conditions by decreasing the redox potential of the iron mineral [10, 52,

90]. In both non-flow and flow conditions, there is an observed reduction of some

fraction of Fe3+ minerals, usually poorly crystalline, at a fast rate followed by a sharp

slowdown caused by the formation of secondary minerals and/or the sorption of Fe2+,

blocking biotic reduction [10, 52, 104, 106]. A major implication of this, as pointed

out by Roden 2006, is that short-term reduction rates may be controlled by microbial

population, iron oxide stability, and carbon availability, but long-term reduction is

controlled by the mass transfer of Fe2+ out of the system [106]. Because Fe2+ is more
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difficult to remove after it mineralizes, it may be the case that the rate of advection

compared to the rate of mineralization is a key ratio controlling iron reduction and

mass balance in soils [56, 90].

Other factors, including pH and the adsorption of SOM, can also influence iron

reduction rates in the soil. The association of SOM with iron oxides (i.e. MAOM)

has been shown to both increase and decrease reduction rates. On one hand, MAOM

adsorption reduces available surface area, decreasing reduction [5, 36]. On the other

hand, MAOM can serve as an electron shuttle, increasing reduction [3, 36]. Iron re-

duction becomes more energetically favorable with decreasing pH because it consumes

protons [85]. However, the impact of pH is not clear, because decreasing pH can also

increase sorption which affects reduction rates [5, 36, 140]. The acidity of the soil can

also influence which microbes thrive, thereby indirectly affecting iron reduction rates

[60]. While much is known about iron reduction, the complexity of soil means that

currently-viable macroscopic models only capture broad strokes without considering

microscale dynamics [56].

To summarize, SOM and Fe2+ adsorption, mineral structure, pH, and the micro-

bial community are all major influences on the rate of reduction, which can vary by

orders of magnitude in soils [36, 62]. The most quickly reducible forms of iron are

short-range order, poorly crystalline iron oxides that have a large specific surface area

[106]. The large surface area of these oxides causes them to sorb more SOM, making

them particularly relevant for carbon stabilization [127]. The differences in surface

area between types of minerals combined with the impact of negative feedback effects

from sorption creates two pools, a quickly-cycling pool and less-easily-reducible sta-

ble pool. The reduction rate of the fast pool is dependent on biogeochemical factors,

while the reduction of the slow pool is likely dependent on the rate of iron mass

transfer out of the system through leeching [106, 127].
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2.2.2 Iron Oxidation

The oxidation of ferrous iron (Fe2+) into iron oxides is energetically favourable in oxic

conditions. The crystals formed during oxidation depend on environmental condi-

tions, including SOM content, pH, and speed of oxidation [126, 127]. In soils, abiotic

oxidation is often assumed to dominate microbial, especially at neutral or alkaline pH

[28, 38]. Microbially-mediated iron oxidation has been observed in rainforests and

streams, but it is assumed to be slower than abiotic oxidation [37, 38]. Besides redox

potential, pH is a dominant controller of iron oxidation [116, 121]. Singer and Stumm

(1970) found that oxidation rate is proportional to the square of the concentration of

hydroxide (OH–), i.e. for a unit increase in pH, the oxidation rate should increase by

two orders of magnitude [116, 121]. Iron oxidation may also play a role in SOM de-

composition by producing reactive oxygen species that then oxidize SOM [51]. Iron

oxidation is critical for the formation of various iron oxides that are ubiquitous in

soils. Unlike reduction, which is microbially dominated in soils, iron oxidation is of-

ten assumed to be abiotically dominated in which case its rate depends only on the

redox potential and pH of the soil.

2.3 The Coupled Water-Iron-Carbon Cycles

While it has been mentioned in the previous sections, it is vital to emphasize the

processes coupling the water, iron, and carbon cycles. When soils are not saturated,

conditions are generally oxic and SOM is oxidized by oxygen. In oxic conditions, iron

is present as Fe3+ in iron oxides [31]. These oxides, particularly short-range order,

poorly crystalline oxides with a high surface area, adsorb SOM or are complexed

with it from coprecipitation [66]. When SOM is attached to minerals, it becomes

MAOM, which is protected from most microbial decomposition [66]. This protection

has important global implications for the ability of the soil to store carbon under
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climate change [24, 32, 45, 53, 123].

At high soil moistures (above field capacity, when leakage is significant), oxygen

concentration drops precipitously, leading to anoxic conditions [128]. In anoxic con-

ditions, SOM decomposition occurs more slowly because other oxidizers have lower

redox potential than oxygen [12, 128]. Ferric iron (Fe3+), due to its abundance and

relatively high redox potential, is often the most significant oxidant in anoxic condi-

tions [2, 28, 36, 78, 118]. The rate of reduction is impacted by soil carbon via the

carbon sorbed to iron oxides, the population of microbial reducers, and the amount

of carbon available for reduction [22, 88, 89]. The reduction of iron oxides releases

the carbon stored on it, in turn releasing protected SOM to become available for

decomposition [23, 58, 88, 93, 95, 135]. This effect has been shown in field studies

and lab experiments to increase the amount of carbon available for decomposition

[23, 58, 88, 93, 95]. Iron reduction can have secondary effects on SOM decomposition

as well by impacting pH and/or enzyme activity [135]. The production of ferrous

iron (Fe2+) can reduce the enzyme phenol oxidase in wetlands which can inhibit SOM

decomposition [135].

Fluctuations in soil moisture drive complex dynamics between iron and carbon

with non-obvious effects. Understanding the dynamical system at play is critical

to improving models of how stored organic carbon will react to changing climactic

conditions and rainfall patterns [32, 123]. One of the most critical questions is what

the impact of iron on the carbon cycle is over different time scales [118]. Short anoxic

periods (days to weeks) may reduce the amount of carbon respired by decreasing

the rate of SOM decomposition [128]. Long anoxic periods (e.g. seasonal flooding),

however, may lead to the release and decomposition of previously mineral associated

organic matter, increasing the amount of carbon dioxide or methane released. This

effect was shown by Huang and Hall 2017 in a 150-day wetland experiment, suggesting

that iron-carbon dynamics should include mineral protection and dissolution [58].
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While these processes are understood mechanistically, without modeling it is difficult

to parse the influence of feedback effects, non-linear dynamics, and tipping points

that may play key roles in the system.

2.4 Modeling Soil Processes

The previous sections gave a broad overview of important mechanisms that lead to

the net macroscopic effects of the soil carbon and iron cycles. This section aims to

cover how these processes are modeled mathematically. The goal of the models used

and discussed in this thesis is not to represent every detail of the system, but to

connect a quantitative framework with an understanding of the major processes to

untangle the relations between important variables and processes. With that in mind,

this section will begin with an overview of existing compartment models, also known

as pool models, and show how they have been used to model soil moisture, SOM, and

the iron cycle.

2.4.1 Compartment Models

Models of many environmental and physical systems, including many SOM models,

are compartment models [42, 84, 113]. There are two necessary elements of a com-

partment model. The first is a quantity or variable of interest. The second are the

fluxes, or inflows and outflows, of the system. Employing the conservation of mass,

change in storage over time must equal inflow minus outflow. Mathematically, this

can be represented as

dx

dt
= I −O, (2.1)

where dx
dt

is the change in storage, I is inflow, and O is outflow. Compartment models

can be used to describe physical, concrete quantities, such as the volume of water in

a lake, or functional groups, such as the population of infected individuals during a
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pandemic [30]. This model can be naturally extended by adding more pools, which

we can represent by a vector, x⃗ = (x1, x2, ..., xn). This yields the following equation:

dx⃗

dt
= I⃗ − O⃗, (2.2)

which is a system of n ordinary differential equations (ODEs). If the fluxes of the state

variables depend on each other (Ii(xj)), then the equations are coupled and together

make a dynamical system. If the system is linear, meaning that each flux is only a

linear function of itself or other state variables, then it can be solved analytically. If

this is not the case, then the equation cannot be solved analytically, but the steady

state solution may be possible to find by setting the time derivatives to zero [83, 113].

Non-linear dynamical systems can be run numerically in order to investigate the

dynamics [113]. Compartment models have long been used to model SOM dynamics

and will be used throughout this thesis to represent water and different forms of iron

and carbon within the bounds of the soil [84].

2.4.2 Soil Moisture Models

Soil moisture is a key variable in SOM decomposition and the most important factor

in the iron cycle [22]. It is the medium in which nearly all soil interactions happen, and

it controls the redox potential, plant productivity, and leeching of solutes [99]. Soil

moisture primarily flows vertically, and many models include the vertical direction in

their formulation [84, 147]. However, a simple compartment model where the variable

of interest is the vertically-averaged volume of water in the soil-rooting zone (≈ top

40 cm) can be a good approximation, capturing most of the important dynamics [99].

In such a model, the state variable is the relative soil moisture, s, defined as the

volume of water divided by the total volume of pores in the soil. The fluxes out of

the soil include evaporation (E(s)), transpiration (T (s)), leakage (L(s)), and runoff
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(Q(s)), which are all functions of soil moisture [99]. The only input is infiltration

(I(t)), defined as rainfall minus canopy interception. Because rainfall occurs quicker

than the length of a typical drydown, an approximation can be made that rainfall

occurs instantaneously [99, 109]. Therefore, the governing ODE can be written as

nZr
ds

dt
= I(t)−Q(s)− L(s)− ET (s), (2.3)

where n is the porosity of the soil and Zr is the rooting depth. Equation (3.1) can

be related back to (2.1) by simply letting x = snZr; inflow is still I, and outflow is

the sum of runoff, leakage, and evapotranspiration (O = Q+L+ET ). The details of

the functions can be found in section 3.1. One benefit of this compartment model is

that it can be intuitively understood while still being loyal to the underlying physics.

The other benefit is that stochastic rainfall can be added to determine important

statistical information about soil moisture [99, 109].

2.4.3 Iron Cycle Models

Chemical reactions are often modeled using ODEs that can be reframed as com-

partment models. The state variables, or compartments, are the masses of a given

reactant or product that change in time with rates proportional to the concentration

of reactants. A reaction is said to be first-order if its rate of change depends only

on its own concentration, for instance the decay of an unstable isotope. A first-order

decay reaction has the form:

dx

dt
= −kx. (2.4)

where the decay is proportional to the mass of the substance x times a rate constant

k. When a reaction depends on the concentration of two reactants, it is second-order,

but if one reactant is much more limiting than the other, it can often be reduced to

a first order reaction with respect to the rate limiting reactant. For example, abiotic

22



iron oxidation depends on O2 and Fe2+, but in oxic conditions O2 is expected to be

at saturation and roughly constant relative to Fe2+. Thus, the oxidation of Fe2+ can

be approximated by:

dFe2+

dt
= −koFe

2+, (2.5)

where ko is an oxidation rate constant. This assumption is only valid if the conditions

are oxic and oxygen is abundant. To account for changing soil moistures and redox

states, a term may be amended that is a function of soil moisture to represent shifting

redox conditions.

Iron reduction is typically coupled to the oxidation of SOM and carried out by mi-

crobes. Microbially-mediated reactions are typically modeled using Michaelis-Menten

kinetics which takes into account the role of enzymes that catalyze the reaction. Ginn

et al. 2017 model iron reduction using this type of reaction wit han equation of the

form

dFe3+

dt
= −kCBM

Fe3+

Km + Fe3+
, (2.6)

where k is the reaction rate constant in units of Fe3+ per unit biomass, Km is the

Michaelis-Menten half saturation coefficient, and CBM is the concentration of mi-

crobes [46]. The main difference between Michaelis-Menten and linear reactions is

that there is a saturating effect at high concentrations of the substrate. In equation

(2.6), for x >> Km, the rate approaches Vmax

KM
which is zero-order. For low con-

centrations of substrate, the rate approaches first-order kinetics. In some instances,

it is convenient to assume reactions are first order as they have nicer mathematical

properties and this assumption usually does not qualitatively change the dynamics.

Another model of reduction, proposed by Calabrese and Porporato 2019, represents

iron reduction with the following equation:

RED = −krCBMClFe
3+, (2.7)
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where CBM is the population of microbial biomass, Cl is the concentration of available

carbon to oxidize, and kr is a rate constant. Similarly to oxidation, a function of soil

moisture is amended to account for the redox potential of the soil [22]. Equation

(2.7) differs from (2.6) by including the impact of the electron donor (Cl) and lin-

earizing the Michaelis-Menten kinetics. The models considered here are macroscopic

representations of countless serendipitous collisions between microbes, reductants,

and oxidants on the microscopic scale. There is no single right way to model these

processes; rather, variables of interest are selected to based on the purpose of the

model and resolution it seeks to capture.

2.4.4 Carbon Cycle

The soil carbon cycle is often represented using a compartment-based model. As

opposed to the iron cycle which uses the oxidation state as a compartment, carbon

models are often grouped by functionally similar pools, which can encompass a diverse

array of chemical compositions [84]. The formerly accepted paradigm of SOM decay

was that the rate of decay is based on inherent chemical properties of the SOM.

Because of this conception, functionally similar groups were defined as those that

have similar decay times [82, 84, 113]. Chemical SOM recalcitrance has greatly

influenced the development of models over time, and several currently used models

are still based on these dynamics [81, 123]. The decay functions of these pools can

be complex functions of several variables or simple first-order decays. The first-order

decay model for SOM was first proposed by Olson 1963 [91, 113]. The following

example is a model with two pools, labile carbon (Cl) and humic, or recalcitrant,

carbon (Ch) undergoing first-order decay with no inputs.

dCl

dt
= −klCl

dCh

dt
= −khCh.
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First-order decay models do not include microbial processes but can still fit data

well, especially if multiple pools are included [84]. The model of equation (2.8) can

be extended to include n pools all undergoing decay, where the fraction of initial

OM added to each pool sums to one. If this were extended to the limit where the

number of pools n approaches infinity and the proportion of new OM in each pool

approaches zero, then it becomes the special case of a continuous quality model,

first proposed by Agren and Bosatta 1998 [4, 84, 113]. Equation (2.8) can also

be expanded, for instance, by putting the models in series to represent exchange

between pools. Or, a microbial biomass pool could be introduced that represents

cycling between microbes and SOM [84, 97]. Each of these possibilities represents a

different dynamic, but these complications come with drawbacks [84, 113]. As models

become more complex, their cycles are more difficult to understand, and analytical

solutions become impossible or intractable. For an overview of the plethora of models

describing SOM decomposition and their mathematical descriptions, see Sierra et al.

2015 and Manzoni and Porporato 2009 [84, 113].

As the conception of SOM has shifted to be broader, placing a larger emphasis

on mineral association, spatial accessibility, and microbial thermodynamics (i.e. is it

energetically worth it for microbes to decompose certain SOM), models have begun

to incorporate these dynamics; however, much work remains to be done [75, 81, 142].

In a 2017 paper, Luo et al. create a model to show how the protection of SOM

via mineral association or physical occlusion can explain carbon recalcitrance in the

soil just as well as a model based on ideas of chemical recalcitrance. The chemical

recalcitrance model followed equation (2.8), where one pool is quickly decomposing,

the other pool is slowly decomposing, and there is no exchange between the two. The

protection model used two pools, one to represent available, unprotected carbon (Cu)

and the other to represent protected carbon (Cp) that is completely unavailable for
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decay. The dynamics are expressed mathematically as

dCp

dt
= −gp(pmax − Cp)Cu − IpCp (2.8)

dCu

dt
= kuCu − gp(pmax − Cp)Cu + IpCp. (2.9)

gp(pmax−Cp)Cu is a term representing unprotected carbon gaining protection, which

reaches saturation at pmax. IpCp represents the rate at which protection is lost, and

kuCu represents decay of unprotected carbon. Luo et al. 2017 found that the different

models can similarly explain observations but lead to drastically different predictions

of current carbon stores and decomposition dynamics [81]. A more applied version

of the protection model was developed by Woolf and Lehmann 2019 and includes

five carbon pools for soluble plant matter, insoluble plant matter, dissolved organic

carbon, mineral associated carbon, and carbon in microbial biomass [138]. This

model, also with no slow-cycling pool, was also able to successfully explain long term

carbon persistence [138].

2.4.5 Modeling the Coupled Water-Iron-Carbon Cycle

To capture the rich dynamics of the carbon and iron cycles, the cycles have to mod-

eled simultaneously with each other and with soil moisture. A dynamical system

combining the models previously discussed is necessary. Large-scale biogeochemical

models may incorporate all of these dynamics, but their complexity limits the ability

to draw conclusions about the specific effects of this coupling [11, 22]. A simple model

coupling hydrology, iron, and carbon cycles was developed in 2019 by Calabrese and

Porporato, who modeled the system using a pool for Fe3+, Fe2+, non-biomass car-

bon, and microbial biomass [22]. The equations were coupled via the reduction term

(equation (2.7)), a linear function of microbial biomass, available carbon, and Fe3+

multiplied by a function that related soil moisture to redox potential [22]. The sys-
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tem, although simple, reproduced a plausible phase space of Fe2+ and soil moisture

for data collected by Barcellos et al. 2018 in a tropical rainforest [7]. Models in-

cluding more factors, such as pH, competition with methane producing bacteria, and

temperature, were developed by Zheng et al. 2018 and Sulman et al. 2022 to look

at the impact of iron reduction on the dynamics of arctic fens, which are growing

rapidly due to melting permafrost [124, 146]. They found that non-linear pH effects

can significantly impact results versus models that do not use them in wetlands [124,

146].

From the carbon modeling side, some existing models incorporate mineral pro-

tection [81, 138]. These models, however, do not take into account the changing

availability of iron minerals in the soil, which reduce the protection offered. They

also do not explicitly include iron cycle dynamics. There is a gap between these two

fields, where models focused on SOM protection do not include changing redox condi-

tions, and models including changing iron reduction do not include carbon protection.

These two effects interact and combined determine whether or not hydrological fluctu-

ations will lead to increased or decreased carbon respiration. Chapter 3 of this thesis

develops a model incorporating mineral protection, changing mineral availability, and

iron as an oxidant to untangle the dynamics of the coupled iron-carbon cycle under

different hydrological regimes.

2.5 Stochasticity in Environmental Models

As established, the soil cycles have several moving parts that all interact over many

timescales. Further complicating this, soil moisture is highly variable with impulses of

precipitation from a chaotic weather system that is virtually random from the point

of view of the soil [109]. The role of randomness, stochasticity, or noise is ubiquitous

in environmental systems and can originate from rain, animals, fires, nutrient inputs,
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or turbulence amongst other phenomena [102]. When noise is additive, a general

equation can be written using the following stochastic differential equation (SDE):

dx

dt
= f(x) + ε(t). (2.10)

In this case, the noise can dominate the system if the signal ε(t) is much greater

than the effect of the deterministic dynamics f(x) or be negligible if the amplitude

of the noise ϵ(t) is small relative to f(x) [102]. In the first case, the system becomes

dominated by stochasticity, and in the second case, the dynamics are not qualitatively

changed. However, if the noise is multiplicative, entirely new and rich behaviors can

emerge [35, 102]. A general equation of multiplicative noise is

dx

dt
= f(x) + g(x)ε(t), (2.11)

where the multiplication of g(x) and the noise term can often qualitatively change

the behavior of the system. An in depth overviews of noise in environmental systems

can be found in the book by Ridolfi et al. 2011 [102], and an overview of stochasticity

particularly as it pertains to various soil moisture topics can be found in Porporato

and Yin 2022 [99].

The effect of noise on a model can be studied in two ways: numerically or analyt-

ically. Most stochastic environmental systems are too complex to be solved analyt-

ically and their dynamics are determined by running Monte-Carlo simulations with

randomly generated noise representing some environmental fluctuation (e.g. random

rainfall) [130]. The result of such a simulation may be a histogram of the value of

the state variable x after a simulation of length T . This histogram, as the number

of runs becomes sufficiently large, will approach the probability distribution function

(PDF), pX(x), of x at time T . The notation used here is that lowercase x is a de-

terministic value representing a specific value, while capital X represents the random
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variable that is not described by a constant but by the PDF, pX(x). pX(x) represents

the probability that X is equal to x (or technically that X is within a small interval

x± dx).

The other way to study stochastic systems is to derive the steady state PDF and,

if possible, the trajectory of the PDF over time [102]. The steady state PDF of SDEs

can be found for specific known cases, many of which have environmental applications

[102]. The advantage of analytical solutions is that the impact of different variables

on the steady state dynamics are readily apparent, and important information, in-

cluding the mean, tipping points, singularities, and relations between variables can all

be derived [102]. Analytical methods of studying noise-driven environmental systems

have been applied to climate resonance, soil moisture, ecosystem dynamics, spatial

vegetation patterns, food chain ecology and more [102]. In this thesis, a numerical,

Monte-Carlo simulation is employed to study the iron-carbon model (following Cal-

abrese and Porporato 2019), while analytical methods are used to study the dynamics

of a simplified iron system driven by random redox fluctuations [22].

2.6 Summary

The iron and carbon cycles are coupled by several mechanisms that depend on the

redox state of the soil, which in turn depends on soil moisture. The first important

mechanism is the microbial reduction of iron oxides to oxidize organic carbon [80, 118].

Due to its abundance and favorable redox potential, iron oxides can be a significant

driver of SOM decomposition in anoxic soils [78, 118, 124]. The second important

mechanism is the stabilization of SOM in the soil by association with iron-oxides,

estimated to be a significant controller of carbon turnover time in the soil [32, 53,

66, 82]. These processes intersect when the dissimilatory reduction of iron oxides

frees the previously-attached organic carbon, a phenomena that has been observed
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in multiple studies [23, 58, 88, 93, 95, 135]. Existing models look at both of these

phenomena separately [22, 81, 124, 138], but as far as can be determined, no models

have explicitly looked at the impact of both concurrently and the consequences of

this for the iron-carbon cycle.

Compartment models are a simple yet wide-ranging and effective tool to model

dynamical environmental systems [42]. Models are vital to understand the long-term

impacts of climatalogical changes (e.g. changing rainfall patterns) on soil carbon

decomposition [123]. Currently, soil carbon models diverge in their predictions of the

effect of climate change on carbon stocks due to the ways in which carbon stabilization

in the soil is modeled [123]. This thesis considers the stabilizing and destabilizing

effect of iron on carbon under varying conditions and hydrologic fluctuations. Further

complications arise from the role of noise, which can significantly impact the behavior

of dynamical systems, such as the iron-carbon cycle, when it applies multiplicatively

[102]. To address noise, both numerical and analytical methods can be employed.

This thesis finds a novel, analytical steady-state solution for the distribution of iron in

soils, addressing the impact of stochastic fluctuations of soil moisture for the first time.

This solution serves to illuminate the key variables that control the presence of iron

in its oxidized or reduced form, which is relevant to both the iron cycle through plant

uptake and leaching and the carbon cycle via reduction rates and mineral protection

capacity.
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Chapter 3

A Numerical Model of the

Water-Iron-Carbon Cycles

3.1 Bucket Soil Moisture Model

Soil properties, including pore size distribution, depth, and the abundance of roots

influence the hydrologic regimes of a soil [99, 109]. Here, following Laoi et al. 2001

a non-dimensional bucket model is used to represent the soil. By vertically average

over the rooting depth, Zr, the model complexity is greatly reduced while important

effects and plant dynamics are retained. This bucket model has been used in a

variety of previous soil water balances and biogeochemical models [22, 71, 84, 97, 99,

109]. The input of water to the model is infiltration, I(t), which is assumed to occur

instantaneously during rainfall. If the rainfall exceeds the capacitance of the soil, the

rest is assumed to runoff [71, 109]. Percolation, or leakage, L(s, t), is a function of

soil moisture and soil properties and is the most important loss term near saturation,

when hydraulic conductivityK(s) is high, and becomes negligible below field capacity,

sfc. Evaporation and transpiration, E(s) and T (s) respectively are also modeled as

functions of soil moisture and are the dominant losses at intermediate soil moisture
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[71, 109]. In this thesis, many plant dynamics are not explicitly represented, such

as increased transpiration during the day, allowing transpiration to become only a

function of soil moisture. Together, these equations yield a governing equation

nZr
ds

dt
= I(t)− L(s)− T (s)− E(s). (3.1)

With

L(s) =
Ks

exp β(1− sfc)− 1
(exp β(s− sfc)− 1), (3.2)

where Ks is the saturated hydraulic conductivity, β = 2b+4 where b is the pore size

distribution index, and sfc is field capacity [71].

E(s) =


0 0 ≤ s ≤ sh

s−sh
sw−sh

Emax sh < s ≤ sw

Emax sw < s ≤ 1

 (3.3)

and

T (s) =


0 0 ≤ s ≤ sw

s−sw
s∗−sw

Tmax sw < s ≤ s∗

Tmax s∗ < s ≤ 1

 . (3.4)

Where Emax and Tmax are maximum soil evaporation and maximum transpiration

respectively. The parameters obey the order: sh < sw < s∗ < sfc, which are the soil

hydroscopic point, the wilting point, the stress point, and field capacity respectively

[71].

3.1.1 Rainfall Modelling

Following work by Rodriguez-Iturbe et al. 1991 and Laio et al. 2001, rainfall incidents

are modeled as a Poisson process with rate of λ in units of [1/day] [71, 109]. This

stochastic process arises if one first assumes that rainfall is equally likely at every
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instant, with a mean frequency of falling equal to 1/λ. The probability distribution

function (PDF) of time between rainfalls, τ , is an exponential with expected value

(mean) E[τ ] = 1/λ, which is written as

pT (τ) = λe−λτ (3.5)

The depth of rainfall is also modeled as an exponential distribution, with mean depth

α. The mean depth of rain, h, has a distribution:

pH(h) = α−1e
h
α . (3.6)

This mathematical representation is extremely useful in allowing for the calculation

of the soil moisture probability [71, 109]. The product, αλ ,is equal to the mean daily

rainfall in a given system. Multiplying this number by 365 days/year gives the mean

annual rainfall, a commonly used statistic for classifying ecosystems [55].

3.2 Iron Cycle

To model the coupled iron and carbon cycles we use a dynamical system composed

of a series of ordinary differential equations. While the interactions between the iron

cycle and carbon cycles are quite complex, the relationships this model focuses on are

the role of iron as a substitute electron acceptor in anoxic conditions and the role of

iron oxides in protecting mineral associated carbon (CMA) [3, 18, 19, 22, 23, 28, 36,

51, 58, 62, 64, 70, 93, 95, 118, 139, 144, 145]. The equations governing the iron cycle

are as follows

dFe2+

dt
= MW − LFe(s)− UP (s)−OX+ RED (3.7)

dFe3+

dt
= OX− RED. (3.8)
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Where Fe2+ is the reduced phase of iron that is more aqueous and thus vulnerable to

leakage (LFe(s)) and uptake by plants (UP (s)). This system only considers the redox

active iron oxides, which is mainly the short-range order, poorly crystalline oxides

with a large specific surface area. This pool is more easily available for reduction

and cycles faster. Exchange between the redox active pool and the stable pool of

iron is an interesting question that has been shown to depend on leaching rates, but

will not be explored in this thesis [106, 120]. The equations for OX and RED are

adapted from Calabrese and Porporato 2019 and are dependent on the redox state of

the soil, which is assumed to be directly controlled by soil moisture. The OX term

represents abiotic oxidation in oxic conditions and only depends on soil moisture and

Fe2+ population, it is written as a first order decay

OX = koxFe
2+g(s). (3.9)

kox is a rate constant in units of [1/d]. The equation for reduction is proportional

to the iron available (Fe3+ and the available electron donors which is assumed to be

available organic carbon (Cl). This yields a reduction equation of

RED = kredFe
3+Clf(s). (3.10)

Here, the dependency on microbial population used in Calabrese and Porporato 2019

has been dropped [22]. Assuming no dependence on microbes is common practice in

SOM decomposition, and it is used here to reduce the number of dimensions of the

system [84]. The functions g(s) and f(s) represent the dependence of the processes

on redox conditions and thus soil moisture. These equations, also from Calabrese and

Porporato 2019 are

f(s) =


0 s < sfc,(

s−sfc
1−sfc

)β

s >= sfc

(3.11)
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g(s) =


1 s < sfc,

1−
(

s−sfc
1−sfc

)ε

s >= sfc

(3.12)

The leakage and uptake terms (LFe(s) and UP (s)) are directly proportional to soil

moisture leakage and plant transpiration respectively.

LFe(s) = LFe(s)[Fe
2+] = LFe(s)

Fe2+

snZr

(3.13)

and

UP (s) = T (s)[Fe2+] = T (s)
Fe2+

snZr

. (3.14)

In the above equations [Fe2+] is the concentration of Fe2+ in g/volume water/kilogram

dry soil where the product of soil moisture (s), porosity (n), and rooting depth (Zr)

represents the volume of water.

3.3 Carbon Cycle

The functional groups of carbon this model focuses on are available (labile) organic

carbon (Cl) and mineral associated (protected) organic carbon (CMA). The interac-

tions between these pools are driven by soil moisture fluctuations and the iron cycle,

represented by the following ODES

dCl

dt
= ADD −DECaer −DECFe −DECCH4 − SRP +DSRP (3.15)

dCMA

dt
= SRP −DSRP (3.16)

The only input to the soil organic carbon is via ADD which represents plant litter

from processes including leaf fall, plant death, and root exudation. The only path

for carbon to leave the system is via respiration of carbon dioxide or methane, which
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is represented by the DEC terms. Decomposition can either be aerobic (DECaer),

anaerobic and iron utilizing (DECFe), or anaerobic and methane produce (DECCH4).

DECFe is proportional to the reduction of iron, DECFe = ΩRED where Ω is a term

representing the grams of carbon oxidized per gram of carbon reduced. This number

is estimated to be Ω = 0.054 from an assumed molar ratio of 4 mol iron needed to

oxidize 1 mol carbon [22, 123]. The aerobic decomposition, DECaer, is modeled as

first order decay modified by soil moisture as [97]

DECaer = kaerClg(s). (3.17)

Similarly, methanogenesis is modeled as a first order decay modified by the soil mois-

ture function f(s) as

DECCH4 = kCH4Clf(s). (3.18)

In these equations f(s) and g(s) are the same as those used in reduction and oxidation

(equations (3.11) and (3.12)). kaer and kCH4 are rate constants with units [1/day],

where kCH4 is much lower than kaer due to the reduced efficiency of the reaction.

3.3.1 Mineral Association

Mineral associated carbon reflects a variety of attachment methods including direction

sorption, co-precipitation, and aggregation [3, 52, 139]. These will be represented

using a sorption equation following Luo et al. 2017 [81]

SRP = ksrp(ωFe
3+ − CMA)Cl (3.19)

DSRP = kdsrpCMA. (3.20)

where ksrp and kdsrp are rate constants for sorption and desorption in units of [1/day]

and ω is the ratio of mass carbon adsorbed per gram of reactive iron. ω was found
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to vary between 0.05 and 3.8 grams C per gram Fe in US forest soils [144].

3.4 Steady State Analysis

One of the major questions around carbon protection in the soil is what factors

or processes matter the most in prolonging carbon storage in the soil [125]. Ther-

modynamic limitations, mineral association, and other factors all play a role, but

untangling their impact quantitatively in different soil systems is difficult [125]. The

goal of this section is to compare the turnover time of carbon in permanently anoxic

soil to permanently oxic soil using the simple system developed. Carbon age, transit

time, and turnover time are often confused terms [114]. Turnover time is defined here

as the ratio between the volume or mass of carbon in the soil divided by the out flux

at steady state. When dynamical systems can not be solved analytically, as is the

case here, the steady-state analysis can provide useful information on the behavior of

the system in the long term. Due to the external driver of the system, hydrological

fluctuations, the system can only be solved in steady state at constant soil moisture.

To find the steady state behavior the time derivatives of the system, equations (3.8)

(3.7) (3.15) and (3.16), are set to zero and the system is solved algebraically.

In the anoxic case (s = 1) the steady state is straightforward. All of the iron is

reduced into Fe2+ and a balance is reached between mineral weathering and losses

from leakage and uptake. Because there is no reactive iron, CMA approaches 0. The

only out flux remaining for Cl is anaerobic decomposition, DECCH4. Setting the time

derivative to zero yields Cs
l = ADD/kCH4.

In the oxic case all of the iron is in its oxidized form (Fe3+). By summing the

state equations for Cl and CMA, it can be derived that Cs
l = ADD/kaer. The steady
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state CMA can then be solved for to yield

Cs
MA =

ksC
s
l ωFe

3+

kd + ksCs
l

. (3.21)

By dividing Cl by CMA + Cl one can determine the proportion of carbon that is

protected at steady state in oxic conditions. In determining whether or not oxic

conditions ’preserve’ SOM in the soil for a longer time, the turnover time, T can be

a useful metric. In oxic conditions, the system simplifies to unprotected/protected

system proposed in Luo et al. 2017 [81]. Because influx = out flux at steady state, the

out flux for carbon is simply equal to the rate of addition, ADD. In anoxic conditions

the turnover time, Ta, can be calculated to obtain

Ta =
ADD/kCH4

ADD
=

1

kCH4

. (3.22)

In oxic conditions, the total volume of C in the soil is the sum of labile and mineral

associated carbon which yields a turnover time of

To =
Cs

l +
ksCs

l ωFe
3+

kd+ksCs
l

ADD
=

1

kaer
+

ksωFe
3+

kdkaer + ksADD
. (3.23)

Equation (3.23) is a modified turnover time of a simple one pool model with a de-

composition rate kaer. In the absence of iron protection (e.g. Fe3+ or ω go to 0),

it reduces to this one pool model. In the no iron case, because kCH4 < kaer one

finds that Ta > To. In this case the thermodynamic limitations of anoxia reduce the

decomposition rate and increase the carbon storage potential of permanent wetland

soils. This agrees with current knowledge on why wetlands are sinks of carbon [125].

In the case where iron protection is significant, the turnover time increases linearly

with the available protection, ωFe3+. It can also be noted that oxic turnover time,

equation (3.23), decreases with increasing addition rates of SOM, not visible in the
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no-protection or anoxic case. This suggests that the priming effect may be in part

explained by mineral association, which is when SOM addition increases the rate of

decomposition of existing SOM in the soil [43, 94]. This was observed numerically by

Luo et al. 2017, but is shown here for the first time analytically [81].

3.5 Model Set Up

The model is run numerically using a forward Euler approximation. The derivative

of a quantity x with respect to time is approximated as

dxi

dt
≈ xi+1 − xi

∆t
, (3.24)

where xi is the value of x at time step i, and ∆t is a constant chosen as the time

step so as to ensure stability. The code was implemented in python and the time step

used throughout was ∆t = 1/100d.

To run the model under different scenarios it must be parameterized and the initial

conditions must be given. Typically models are parameterized using outside infor-

mation or data. In terms of data availability, there are several studies investigating

the rate of iron reduction under different conditions [3, 19, 46, 51, 79, 80, 108]. A

few controlled experiments have investigated the impact of iron reduction on the re-

lease of carbon [23, 88, 93]. There are some field studies that implicitly include both

effects by observing changes in iron and carbon under different hydrological regimes

[58, 95, 134, 135]. Fitting to a single set of data would give a single, diagnostic model,

which can only be applied locally [15]. Instead, this model is applied over a range

of parameter values to demonstrate the breadth of the modeling space [15] and the

possible interactions between parameter values and hydrologic regimes as it pertains

to carbon emissions.
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3.5.1 Parameterization

The model is based on that of Calabrese and Porporato 2019 and so their param-

eter values are used as a starting point; the full list of parameters can be found in

table 3.1 [22]. The soil parameters will be kept constant and are based on Luquillo

Experimental Forest, with data from Hall et al. 2013 [22, 50]. The reduction rate

constant, kred given by Calabrese and Porporato 2019 is 8.89 × 10−15 kg2/g/cells/d

and needs to be multiplied by the number of cells which ranges in their study from 1.0

to 2.5× 1011 cells/kg [22]. This yields a range from about 0.0005 to 0.002 kg g−1 d−1.

Values inferred from [108], [106], [104], and [3] agree with this range, but with a range

of uncertainty coming from a lack of data on the electron donors. This study will

place an upper bound on reduction rate at kr = 0.1 kg g−1 d−1 to account for the fact

that in the model 10% or less of carbon may be available due to mineral protection,

thus skewing the rate of reduction to be effectively lower. Oxidation rates, kox, also

range over order of magnitudes. Stumm and Morgan 1992 report that at a pH of 5,

kox ≈ 10× 10−6 s−1 and at a pH of 7, kox ≈ 10× 10−2 s−1 (864 d−1), scaling with the

concentration of hydroxide squared [116, 121]. A study by Ginn et al. 2017 found an

oxidation rate in this range of 432 d−1 [22, 46]. Our concern is primarily with humid

soils which are buffered by aluminum oxides at a pH of about 5.1, which will be taken

as the approximate baseline [117]. In the base case of this model, it is assumed that

sorption and desorption occur much faster than reduction, therefore ks and kd are as-

signed a value of 10 which assumes it is virtually instantaneous. The grams of carbon

oxidized per gram of iron reduced, Ω = 0.054, is found by assuming 4 moles of iron

are reduced for each mole of carbon dioxide produced then converting units to grams

[22, 124]. The ratio of mineral associated carbon to Fe3+, ω, has was found by Zhao

et al. 2017 to range from 0.56 to 17.7 molar ratio, or 0.12 to 3.80 mass ratio [145]. A

value of ω = 2.87 gC/gFe3+ was calculated from the ratio of released DOC to release
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Parameter Symbol Value Range Units

Reduction rate constant kred (0.0005, 0.01) kg/gC/d
Oxidation rate constant kox (0.086, 864) d−1

C ox. to Fe3+ red. ratio Ω 0.054
C to Fe3+ association ratio ω (0.12, 3.80) gC/gFe3+

Aerobic decomp. rate constant kaer (2.7× 10−4, 0.042) d−1

Methanogenesis rate constant kCH4 kaer/10 d−1

(De)sorption rate constant ks (kd) 10 d−1

Table 3.1: Parameter ranges for the numerical model. See section 3.5.1 for sources.

Fe2+ in a study by Mikutta et al. 2024 [88]. The first order decay aerobic respiration

constant used by Calabrese and Porporato 2019 is kaer = 2.74 × 10−4 d−1 and was

taken from Bloomfield et al. 1993 [17, 22]. A survey of litterbag decomposition rates

in rainforests by Powers et al. 2009 found a range of rates from 0.47 yr to 15.10 yr

(0.001 29 d−1 to 0.0414 d−1) and that a single pool first order decomposition fit the

data well [100]. Our model uses mineral protection and is modified by soil moisture,

so the parameterization is not one to one, but these values give a good estimate of

what aerobic decomposition rates may look like. All other anaerobic decomposition

was lumped together into methanogenesis which is a complex multistep process usu-

ally involving a time lag [29, 86]. The rate of anaerobic decomposition (excluding via

iron reduction) is slower than aerobic due to the lower Gibb’s free energy (∆ G) of

the reaction [9, 12, 72]. In highly anoxic conditions there is a threshold beyond which

decomposition is infeasible, which is around 16 kJ/mol C ∆ G. Aerobic decomposi-

tion often has a ∆ G ¿ 100 kJ/mol C [72]. Using a highly simplified thermodynamic

argument, it is assumed here that anaerobic decomposition will occur about 10 times

slower than the aerobic rate. This is generally reasonable as aerobic and anaerobic

decomposition rates likely co-vary due to environmental factors such as temperature

and microbial population.
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Parameter Symbol Value Units

Rooting Zone Depth Zr 0.4 m
Porosity n 0.4
Field Capacity sfc 0.8
Stress Point s∗ 0.76
Wilting Point sw 0.42
Hydroscopic Point sh 0.36
Evaporation Max Ew 0.5 mmd−1

Transpiration Max Tm 3.0 mmd−1

Table 3.2: Soil parameters used. Taken from Calabrese and Porporato 2019 [22] which
obtained the data from Hall et al. 2013 [50].

3.5.2 Simulations

Several simulations were run with varying hydrological fluctuations forcing the sys-

tem. The goal of the simulations is to understand the dynamics of the system under

different hydrological fluctuations, parameter values, and initial conditions.

Static Soil Moisture

In the first set of simulations soil moisture is kept constant in anoxic conditions

(s = 1). Under these conditions the impact of different concentrations of reactive

Fe3+ is considered, ranging from 0 to 12 g/kg, with parameter values and initial

carbon concentration kept constant. In the next simulation kred was varied between

0.0005 and 0.0025 kg g−1 d−1 with all else constant. In the third static soil moisture

simulation ω was varied with all else constant between 0 and 4 gC/gFe3+. The

constant parameter values were kred = 0.0018 kg g−1 d−1, kox = 1d−1, ω = 3, kaer =

0.002 d−1, Fe 3+
0 = 6g kg−1, and Cl0 = 30 g.

Repeated Redox Cycles

In this section the effect of repeated redox cycles of a set length will be examined.

This has been done in other simulations [21, 124] and experiments [46, 88]. The length
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of redox cycles can vary from days in humid soils to weeks in wetlands and months

in seasonally flooded soils or paddy fields [27]. The first simulation kept a constant

cycle anoxic to oxic ratio of 5:1 with varying from 1 day anoxic 1/5 days oxic up to

80 days anoxic to 16 days oxic. The second simulation kept the length of the anoxic

duration constant at 10 days and varied the length of the oxic duration from 1 day to

8 days. The parameter values are kred = 0.0018 kg g−1 d−1, kox = 1d−1, ω = 3, and

kaer = 0.002 d−1. The initial amounts of iron and carbon were varied for each run to

have a low iron condition, Fe 3+
0 = 5g kg−1 and high iron condition Fe 3+

0 = 10 g kg−1,

and likewise a low carbon and high carbon condition Cl0 = 30 g kg−1 and Cl0 = 60 g

respectively.

Stochastic Soil Moisture

In the third set of simulations soil moisture dynamics are included to imitate the

dynamics of a soil in a humid climate where rainfall is frequent but random. There

are two rainfall parameters. α, the mean depth of rainfall, is kept constant at a value

of 12 mm. λ was varied between values of 0.5 d−1 and 1.5 d−1. Parameters were kept

at values of kox = 0.1 d−1, kaer = 0.002 d−1, kCH4 = kaer/10. The parameter kred was

varied between 0.001 and 0.1, and the parameter ω was set to 0 for the no protection

scenario and 3 gC/gFe3+ for the protection scenario.

3.6 Results

Here, the results of the simulations are presented. The unit used throughout to

quantify the effect on emissions is total C loss which is the sum of carbon dioxide and

methane emissions in grams of carbon per kilogram of soil.

43



Figure 3.1: kred = 0.0018, kox = 1, kaer = 0.002, s = 1. The production of Fe2+ and
carbon loss via mineralization (CO2 production) is shown for several different initial iron
concentrations under static anoxic conditions.

3.6.1 Results: Static Soil Moisture

The results for the simulations where soil moisture was kept constant at s = 1 are

shown in table 3.3. Over an 80 day period, carbon loss increased with faster reduction

rates, kred, from 0.44 to 0.73 g/kg. Carbon loss decreased with higher protection rates

(higher ω) but only slightly. The effect of initial iron concentrations are shown in the

top row of table 3.3 and the entire dynamics are shown in figure 3.1. For no and low

iron concentrations (0, 3, 6 g/kg) carbon loss increases with iron concentration as iron

is used as the primary oxidant. However, as iron concentration increases to 9 and

12 g/kg, the initial carbon losses and iron reduction are low, but begin to increase

quickly throughout the simulation. This second-order behavior is due to the fact

that at the beginning a larger portion of the carbon is mineral associated and thus

unavailable to decompose, but as iron is reduced the carbon is freed and it becomes

available to be decomposed, leading to a feedback effect. As seen in the red line in

figure 3.1 this feedback effect causes the slope to increase initially but is then limited

by the concentration of iron in the system.
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Table 3.3: Total Carbon loss in g/kg after 80 days of static anoxic conditions. Each top row
shows the parameter varied (Fe 3+

0 , kred, ω) and each bottom row shows the corresponding
C loss as carbon dioxide or methane.

Parameter Varied
Carbon Loss [g/kg]

Fe 3+
0 [g/kg] 0 3 6 9 12

C loss 0.48 0.60 0.69 0.74 0.60

kred [kg/g/d] 0.0005 0.001 0.0015 0.002 0.0025
C loss 0.44 0.59 0.67 0.71 0.73

ω [gC/gFe3+] 0 0.5 1 2 4
C loss 0.79 0.78 0.77 0.76 0.76

Table 3.4: Total Carbon Loss after two years of redox cycles of set length. The ratio of all
redox cycles is 5:1 anoxic:oxic, with anoxic periods of 1 day, 5 days, 20 days, and 80 days.
Low iron and high iron is 5 g/kg and 10 g/kg respectively. Low carbon and high carbon is
30 g/kg and 60 g/kg respectively. Parameters used are described in section 3.5.2.

Ratio 1:1/5 5:1 20:4 80:16

Treatment C Loss after 2 Years [g/kg]

Low Fe + Low C 7.66 7.65 7.62 6.79
High Fe + Low C 4.19 4.24 4.35 5.44
Low Fe + High C 18.72 18.40 17.61 14.15
High Fe + High C 20.26 20.06 19.44 14.39

Figure 3.2: Simulations of redox cycles with different lengths of oxic periods are shown
under high and low iron and high and low carbon conditions. Low Fe = 5 g/kg, High Fe
= 10 g/kg, Low C = 30 g/kg, High C = 60 g/kg. Redox cycles of 10 d anoxic + 1 oxic,
10 d anoxic + 4 d oxic, and 10 d anoxic + 8 d oxic are shown. kred = 0.0018, kox = 1,
kaer = 0.002.
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3.6.2 Results: Redox Cycles

The total carbon loss after deterministic redox cycles with an anoxic:oxic ratio of 5:1

run for two years is shown in table 3.4. From this table it is evident that the longer

redox cycles (20 and 80 days anoxic) had less carbon mineralization in all simulations

except the high iron low carbon simulation, where they had more. This suggests that

in all simulations except high Fe low C, iron reduction played a larger role than iron

protection.

The redox cycles with a constant anoxic period (10 days) and varying length oxic

period (1 day, 4 days, 8 days) is shown in figure 3.2. In the top row (1 day oxic)

the high carbon high iron condition leads to the most decomposition. In the bottom

row (8 days oxic) the low iron high carbon decomposes the most carbon. This switch

between iron promoting versus hindering carbon decomposition is not seen in the low

carbon simulations where low iron always leads to more decomposition. This suggests

that only in the high carbon high scenario with much longer anoxic than oxic periods,

irons role as an oxidizer outweighs its role as a protector.

The results of this trial agree with those of Mikutta et al. 2024, which found that

in successive redox cycles, higher carbon addition leads to greater iron reduction [88].

Chen et al. 2020 found that in oxic conditions, when carbon and iron are added to a

soil together, iron will protect the carbon and lead to lower emissions, but can lead

to higher CO2 emissions under fluctuating conditions [23].

3.6.3 Results: Stochastic Soil Moisture

The results of two simulations run for year with stochastic rainfall are shown in figure

3.3. In the first simulation (top row) α = 12mm is the mean depth of rainfall and

λ = 0.5 d−1 is the mean frequency of rainfall, i.e. it rains on average once every

two days (very wet climate). In the second simulation (bottom row) α is the same,
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Figure 3.3: Simulations of soil moisture under stochastic rainfall. The parameter kred
was evaluated at a value of 0.001 kg g−1 d−1 and 0.1 kg g−1 d−1. The protection case (MA)
had ω = 3 and the no-protection case (no MA) had ω = 0. The other parameter values
used are described in section 3.5.2.

but λ = 1.5 d−1, i.e. it rains more than once day on average. The wet simulation

is meant to imitate to the conditions seen in a lowland or wetland where water

table fluctuations and rainfall both contribute to a situation where anoxic conditions

are dominant but still random. Both simulations were run with slow reduction,

kred = 0.001 kg g−1 d−1, or fast reduction, kred = 0.1 kg g−1 d−1 and no protection

(no MA) where ω = 0 and protection (MA) where ω = 3. In the less rainy scenario

no protection leads to higher decomposition in both cases. On the other hand in the

rainy scenario higher reduction with mineral protection leads to faster decomposition

than no mineral protection and slow reduction. This shift demonstrates that under

certain hydrological conditions the dominant mechanism of carbon decomposition can

change.
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3.7 Discussion

The results demonstrate the wide array of effects of iron on carbon decomposition

depending on the redox cycles, initial conditions, and parameter values such as reduc-

tion rate, oxidation rate, and carbon to iron attachment ratio. First, the initial iron

concentration can have a major impact on the redox dynamics. In the static flooded

simulation it was shown that when iron levels are high enough there will be a feedback

effect wherein iron reduction will free carbon and lead to faster iron reduction (figure

3.1). This is important to note as it demonstrate that duration of the anoxic period

plays an important role in the dynamics. Most experiments are run with redox cycles

of days to weeks [23, 46, 88, 108], however having a redox cycle of only twenty days

would yield results that show that higher iron leads to less CO2 (due to protection)

and extending the experiment would show the opposite. This is what is demonstrated

in Huang and Hall 2017 [58] in an experiment where soils were kept at field capacity

or saturated for an extended period. After 25 days, the field capacity soils (oxic)

had higher cumulative CO2 emissions, as expected due to the high redox potential

of oxygen. However after that the rate of CO2 and CH4 emissions increased in the

saturated soil, leading to higher carbon emissions in the saturated soil after about

30 to 40 days [58]. This highlights the criticality of time scales in the dynamics of

iron and carbon cycles and suggest that results from short term experiments may not

capture the correct direction in the long term due to the release of protected carbon.

Our simulation also points to the importance of understanding how large the reactive

iron pool is (primarily poorly crystalline short range order iron oxides), as much of

the iron in soils is stable and will not be reduced, except perhaps in the case of large

scale leaching of iron [106].

The results from the redox cycles (table 3.4 and figure 3.2) demonstrate the im-

portance of both the ratio of anoxic to oxic and the timescale of the fluctuation. In
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table 3.4 it is evident that longer cycles (80:16) lead to lower mineralization of car-

bon in all conditions except high iron low carbon. This is because in that case the

longer period of reduction allowed most of the carbon to become free and available

for reduction which was not the case under shorter redox cycles. Under the high

carbon cases, the longer redox cycles significantly decreased the total carbon min-

eralization (29% lower than 1:1/5 day cycles), likely due to iron limitations. When

redox cycles reach a certain length, all of the reactive iron is reduced and is no longer

available as an oxidizer and thus less energetically favourable and slower reactions

like methanogenesis dominate decomposition [2, 85, 124]. In the second simulation,

where the anoxic length is set at 10 days and oxic length varies (figure 3.2) there are

shifting relationships between carbon mineralization, initial iron, and initial carbon

concentration. Under low carbon conditions low iron always lead to more decomposi-

tion regardless of the redox cycle, suggesting that mineral protection dominated and

reduced mineralization. Under high C greater iron lead to more decomposition when

anoxic conditions dominated. These results agree with a study by LaCroix et al. 2019

[70] which found a high correlation between reducible Fe and carbon stores in upland

soils (mostly oxic conditions), but no correlation in lowland, seasonally flooded soils

which experience long durations of anoxic conditions.

In the third set of simulations stochastic rainfall was considered for a wet soil

(λ = 0.5 d−1) and very wet soil (λ = 1.5 d−1) and is shown in figure 3.3. The two

major controls on carbon mineralization by iron are iron reduction which depends on

kred and the role of iron as a protector of carbon, which depends on the carbon to

iron mineral association ratio, ω. We see that in the less wet soil the effect of mineral

association is a more important than kred. This relationship changes in the very

wet soil as more carbon is mineralized under the higher reduction rate with mineral

protection than a low reduction rate without mineral protection. These results also

compare and contrast the dynamics of a soil while including mineral protection and
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without including it. When mineral protection is not included there is significantly

more decomposition in both scenarios, and the difference between high reduction and

low reduction is smaller. When mineral association is included, the rate of reduction

becomes critical because it plays a two-fold role in the rate that carbon is oxidized

and the rate that it loses protection. The stochasticity of the rainfall appears to be

“smoothed” by the slower rates of reduction and decomposition. Most soils in humid

climates are closer to the less wet scenario. The implications of this are that mineral

protection, even in a relatively wet climate can be significant relative to the role of

iron as an oxidant.

Overall, this simple numerical model that captures key relations between iron,

carbon, and hydrology demonstrates a wide range of behavior. Most surprising was

the model’s dependence on the initial conditions of the amount of reactive iron and

carbon in the soil. The maximum protective capacity of the iron in this model is

equal to Fe3+ω. In the case where carbon exceeds this value there is ample free

carbon to decompose. In the case where carbon is equal to or less than this value

only a small fraction of the carbon at any time is available to decomposition and

thus the dynamics are highly dependent on the rate of reduction of iron, with a

non-linear feedback loop leading to an acceleration of iron reduction and carbon

decomposition in anoxic conditions. This acceleration is demonstrated in our figure

3.1 and aligns with the observations of Huang and Hall 2017 [58], although more work

is needed to verify this acceleration/feedback effect. The two effects, protection and

reduction, already demonstrate a variety of dynamics, yet they alone do not capture

the entire picture of the coupled iron carbon cycles. A few of the components not

included are microbes, pH levels, Fenton reactions, iron leaching, co-precipitation,

crystallization, photosynthetic reactions, and plant interactions [23, 28, 36, 51, 106,

118, 124]. Another drawback of this model is that despite its simplicity, it is not

available to analytical analysis under fluctuating redox conditions. An analytical
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analysis of the stochastic model is performed in the chapter 4 to find functional

relationships between hydrological variables and iron reduction.
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Chapter 4

Analytical Solution to the

Stochastic Ferrous Wheel

4.1 Problem Formulation

To intuitively understand a system, it is of major benefit to have an analytical solution

wherein the relation between key variables is clear and interpretable. Unfortunately,

most environmental systems are described by non-linear dynamical models which can

not be solved analytically, as is the case with the model developed in chapter 3. It

is occasionally possible, however, to simplify the system by making assumptions in

order to obtain analytical solutions. This is the case for instance for groundwater flow

around a well or the equations of the Ekman spiral in atmospheric and ocean flows

[40, 44]. Here, a novel analytical solution is derived from a simplified model of the soil

iron cycle for the case of stochastic fluctuations between oxic and anoxic conditions.

This solution is then used to derive analytical functions of hydrological variables and

iron cycle parameters to predict trends in carbon oxidation and protection. The

purpose of this is to gain an understanding behind the dynamics of the soil iron cycle

in different climates that is not possible from numerical models. Understanding the
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soil iron cycle will then directly lead to an improved understanding of the carbon

cycle due to their coupling.

Just as the previous section built on a numerical model developed by Calabrese

and Porporato 2019, this section will build on the simplified, analytic model of the

iron cycle of Calabrese et al. 2020 [21, 22]. The first simplification is to reduce the

model to its two most important components, reduction and oxidation. This assumes

that there is a roughly constant reactive iron pool (Fetot) that can be in its oxidized

state (Fe3+) or reduced state (Fe2+). The approximation of a constant reactive iron

pool is discussed further in Appendix 6.1.

The simplified system can be written using two compartment equations as

dFe2+

dt
= RED(Fe3+)−OX(Fe2+) (4.1)

and

dFe3+

dt
= −RED(Fe3+) + OX(Fe2+). (4.2)

In equations (4.1) and (4.2) the RED and OX terms represent the same as in equations

(3.7) and (3.8), but will be formulated differently here.

It is now assumed that soil organic carbon and iron reducing microbes are constant,

such that reduction becomes a first order reaction only dependent on Fe3+ and redox

potential of the soil. Redox conditions are represented by a term, ξ(t), yielding

reduction and oxidation equations of

RED = krFe
3+ξ(t), OX = koFe

2+(1− ξ(t)). (4.3)

Here, ko = kox as used in equation (3.9). However the reduction constant, kr, does

not equal kred as used in (3.10). Instead, equation (4.3) treats reduction as a first-

order process dependent only on Fe3+ and thus kr has unit of 1/day. This makes it

53



an implicit approximation kr ≈ kredCl where Cl is the average available carbon.

When conditions are anoxic ξ(t) approaches zero, while in oxic conditions it is

almost one. Since total iron (Fetot) is conserved Fe3+ can be written in terms of Fe2+

Fetot = Fe2+ + Fe3+ → Fe3+ = Fetot − Fe2+, (4.4)

where Fetot is a constant. Now, the system of two equations is reduced to just a single

equation for Fe2+. The equation can be normalized by dividing by Fetot to yield a

new state variable, x = Fe2+

Fetot
∈ [0, 1]. Combining equations (4.1), (4.4), and (4.3) and

substituting in for x yields

dx

dt
= kr(1− x)ξ(t)− kox(1− ξ(t)). (4.5)

This equation describes the evolution of the fraction of Fe2+ in the soil driven by

soil moisture fluctuations in the ξ(t) term. kr contains within it the various factors

influencing reduction rate, such as mineral properties, available surface area, presence

of electron donors, and population of iron reducers (see section 2.2.1) [21, 34, 106].

The term ξ(t) represents the redox state of the soil, which is primarily driven by

the abundance of O2. The oxygen content in the soil is a highly non-linear function

of soil moisture, remaining near saturation from s = 0 up until field capacity, then

rapidly increasing to anoxic conditions near saturation [50, 115]. To simplify the

system, the soil is divided into two states, oxic when s is less than some threshold

value, and anoxic when s exceeds the threshold, following Calabrese et al. 2020 [21].

The redox term is then assigned to be binary: ξ(t) = 0 in oxic conditions and ξ(t) = 1

in anoxic conditions [21]. The system is now driven by stochastic switches between

redox states. It is assumed that ξ(t) changes in time following a Dichotomous Markov

process where it switches from oxic to anoxic (ξ(t) = 0 → 1) with a rate k1 and

switches from anoxic to oxic (ξ(t) = 1 → 0) with rate k2. Both rates are determined
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by the stochastic soil moisture dynamics [102].

There are two possible ways to represent the system mathematically. The first

method is called the functional representation and it frames equation (4.5) as a

stochastic differential equation (SDE) as follows [102]

dx

dt
= f(x) + g(x)ξ(t) = −kox+ [kr(1− x) + kox] ξ(t). (4.6)

The second representation, called the mechanistic approach, poses the dynamics as a

piece-wise equation. If conditions are oxic the change in x is driven by one function,

fo(x) = −kox, and if conditions are anoxic it is governed by another function, fa(x) =

kr(1− x) [102]

dx

dt
=

 −kox, s ≤ scrit (ξ(t) = 0)

kr(1− x), s > scrit (ξ(t) = 1)

 . (4.7)

If a switch from anoxic to oxic occurs at time t0 with x(t0) = x0, the dynamics until

the next switch can be solved as a simple exponential ODE to yield

x(t) = x0e
−ko(t−t0). (4.8)

Similarly the deterministic dynamics when conditions switch from oxic to anoxic can

be solved to find

x(t) = 1− (1− x0)e
−kr(t−t0). (4.9)

4.2 Deriving the Steady State Probability Density

Function

Now that the problem is mathematically defined, the steady-state solution under

stochastic redox fluctuations can be found. The steady-state PDF is a function with
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area of unity that describes the theoretical probability of finding the state variable (x)

in a particular infinitesimal range, dx. Let p(x, 0; t)dx represent the probability of the

state variable being x while ξ(t) = 0 (oxic conditions) at time t. Beginning from the

Chapmann-Kolmogorov equation, the forward Kolmogorov equation can be derived

as done in Ridolfi et al. 2007 [102]. The forward Kolmogorov equation describes the

change in the probability of being at a state (x, ξ, t) in time and can be written for

ξ = 0 as follows (ξ is used in place of ξ(t) for notations sake),

∂p(x, 0, t)

∂t
= − ∂

∂x
[p(x, 0, t)fo(x)]− p(x, 0, t)k1 + p(x, 1, t)k2. (4.10)

Where the change in probability of being in state ξ = 0 is positively correlated with

the rate of switching from state ξ = 1 to state ξ = 0 (k2) and negatively correlated

with the rate of switching from state ξ = 0 to state ξ = 1 (k1) as expected. The same

procedure is followed to write the forward Kolmogorov for being at (x, 1, t) as

∂p(x, 1, t)

∂t
= − ∂

∂x
[p(x, 1, t)fr(x)]− p(x, 1, t)k2 + p(x, 0, t)k1. (4.11)

The steady-state PDFs of these equations can be found by setting the time derivatives

to 0 and integrating with respect to x.

p(x, 0) =
C

fo(x)
exp

{
−
∫
x

k1
fo(x′)

+
k2

fr(x′)
dx′

}
(4.12)

p(x, 1) = − C

fr(x)
exp

{
−
∫
x

k1
fo(x′)

+
k2

fr(x′)
dx′

}
. (4.13)

In these equations C is an integration constant that is determined so that the marginal

distribution of x integrates to unity. The marginal distribution of x, pX(x) can be

found by summing over the possible states of ξ: pX(x) = p(x, 0) + p(x, 1). Written
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out it becomes [102]

pX(x) = C

[
1

fo(x)
− 1

fr(x)

]
exp

{
−
∫
x

k1
fo(x′)

+
k2

fr(x′)
dx′

}
. (4.14)

Solving this equation for the system yields

pX(x) =
C

ko

[
1 + x(

ko
kr

− 1)

]
x

k1
ko

−1(1− x)
k2
kr

−1. (4.15)

This distribution reduces to the well studied beta distribution when ko = kr [1, 61].

Buckingham Pi Theorem states that given n variables andm fundamental dimensions,

n−m dimensionless groups can be formed which provide fundamental relations [20].

In this system there are n = 4 free variables and m = 1 dimension, time. Therefore,

there should be three dimensionless variables that can describe the system. Here, the

PDF cleanly defines three dimensionless ratios, ϕ = k1
ko
, θ = k2

kr
, and β = ko

kr
. The

PDF can be re-written as

pX(x) = Cx [1 + x(β − 1)]xϕ−1(1− x)θ−1. (4.16)

Where Cx = C
ko

is found by setting the integral of the PDF from 0 to 1 equal to one

and solving. Cx has the following analytic form

Cx =

[
B(ϕ, θ)

[
1 + (β − 1)

ϕ

ϕ+ θ

]]−1

. (4.17)

Where B(ϕ, θ) is the beta function given by

B(ϕ, θ) =
Γ(ϕ)Γ(θ)

Γ(ϕ+ θ)
, (4.18)
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Figure 4.1: PDF of x for different values of ϕ, θ, and β. The plot is split by critical points
(θ = 1 and ϕ = 1). The subgraphs plot x on the x-axis from 0 to 1 against pX(x) on the
y-axis.

where Γ(x) is the gamma function, which is just the factorial if x is a natural number.

The cumulative distribution function (CDF) is defined generally as

PX(x) =

∫ x

0

pX(x
′)dx′. (4.19)

In this case it can be solved to yield

PX(x) =
Cx

B(ϕ, θ)

[
Bx(ϕ, θ) + (β − 1)

(
Bx(ϕ, θ)−

xϕ(1− x)θ

ϕ

)]
, (4.20)

where Cx is defined in equation (4.17). Bx(ϕ, θ) is the incomplete beta function

defined as

By(ϕ, θ) =

∫ y

0

xϕ−1(1− x)θ−1dx. (4.21)
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4.2.1 Mean

The expectation of x can be found by integrating the PDF multiplied by x as follows

E(x) = Cx

∫ 1

0

x [1 + x(β − 1)]xϕ−1(1− x)θ−1. (4.22)

This has the solution

E(x) =
ϕ

ϕ+ θ

1 + (β − 1) ϕ+1
ϕ+θ+1

1 + (β − 1) ϕ
ϕ+θ

. (4.23)

As a sanity check for equation (4.23), the expectation correctly reduces to the mean

of a beta distribution: ϕ/(ϕ+ θ) for β = 1 (ko = kr) [61]. This derivation relates four

parameters (ko, kr, k1, k2), oxidation rate, reduction rate, transition rate to anoxic

conditions, and transition rate to oxic conditions respectively to the average fraction

of active iron that is ferrous. This fraction has important ramifications for iron

availability, iron leaching, and the interactions of iron with the carbon cycle. The

moment generating function of the PDF can be found analytically, allowing one to

derive any higher moment (e.g. variance), however it is an unwieldy equation that is

not shown here.

4.2.2 Crossing Times

The frequency of crossing a certain threshold can be an important variable to know

for many environmental variables. For instance the amount of time under stress from

lack of water or a nutrient can be determined from level-crossing statistics [99]. The

frequency of crossing a level ε can be given by the following general formula [99, 129],

v(ε) =

∫
|ẋ|p(ε, ẋ)dẋ. (4.24)
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Where ẋ is the rate of change of x. For stationary conditions, the frequency of

upcrossing must equal the frequency of downcrossings (v(ε) = v↑(ε) = v↓(ε)) [99].

When the loss or gain functions of the state variable are known, the crossing frequency

can be intuitively derived as follows (following Porporato and Yin 2022) [98, 99]. By

definition the fraction of time a variable is in an interval ε + dε is given by p(ε)dε.

The fraction of time a variable is in the same interval is also equal to the frequency

of crossing the interval, v(ε), times the amount of time spent it takes to cross the

interval, assuming there are no switches while crossing. The time it takes to cross the

interval is dε/|ρ↑(↓)(ε)|, where ρ↑(↓)(ε) is the slope of the variable at the upcrossing

(downcrossing). Because p(ε)dε and the frequency times the time it takes to cross

the interval both represent the fraction of time spent in the interval, it can be written

that

p(ε)dε = v(ε)
dε

|ρ↑(ε)|
+ v(ε)

dε

|ρ↓(ε)|
= v(ε)dε(

1

|ρ↑(ε)|
+

1

|ρ↓(ε)|
). (4.25)

Solving for v(ε) yields,

v(ε) = p(ε)
|ρ↑(ε)ρ↓(ε)|

|ρ↑(ε)|+ |ρ↓(ε)|
. (4.26)

It is known that ρ↑(ε) = (1 − ε)kr, ρ
↓(ε) = −koε, and p(ε) from equation (4.15).

Substituting yields

v(ε) = Ckoε
ϕ(1− ε)θ. (4.27)

From here, the mean duration of an excursion below a threshold, T̄ ↓
ε , can be derived.

The fraction of time spent below ε by definition is the CDF at ε, P (ε). It is also

equal to the mean duration of an excursion times the frequency of excursion, T̄ ↓
ε v(ε).

Solving for the average duration gives

T̄ ↓
ε =

P (ε)

v(ε)
. (4.28)
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Similarly, the mean time above can be derived to yield

T̄ ↑
ε =

1− P (ε)

v(ε)
=

1

v(ε)
− T̄ ↓

ε . (4.29)

Combining equations (4.20), (4.27), and (4.28) gives an expression for the average

duration of an excursion below a threshold in terms of the three dimensionless pa-

rameters. Substituting in equations (4.27) and (4.20) into equations (4.28) and (4.29)

is left as an exercise for the reader.

4.3 A simplified Soil Moisture Model

In pX(x) (equation (4.16)) there is a dependency on k1 and k2, the average frequency

at which conditions switch from oxic to anoxic and from anoxic to oxic respectively.

These parameters depend on the hydrology of the soil, as conditions are assumed to

be anoxic when s > sc and oxic when s ≤ sc. Due to the randomness of rainfall, s is

itself a random variable driven by an SDE. If the dynamics of s are known, then k1

and k2 can be derived, connecting the PDF of iron to the hydrological parameters of

the system. The frequency of switching from oxic to anoxic conditions, k1, is equal

to the reciprocal of the average length of excursion below sc, T̄
↓
sc . This is also the

average duration that oxic conditions persist and so for neatness T̄ ↓
sc = τo. Similarly,

k2 = 1/τa, where τa is the average duration that anoxic conditions persist.

The iron system was solved assuming that the switches between oxic and anoxic

are dichotomous Markov noise (DMN). If this were the case, the distribution of the

lengths of excursions would be exponential with mean τo and τa. In reality, the

memory of the soil moisture means that the process is not Markovian and the lengths

of excursions are not exactly exponentially distributed. Here, by assuming DMN,

the approximation is made that the distribution of excursions is exponential. This

assumption is reviewed in section 6.2.
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For the numerical model, the dynamics for s, given by equation (3.1), included

non-linear losses from leakage (L(s)) and a piece-wise loss function for evapotranspi-

ration (ET (s)). Rodriguez-Iturbe et al. 1999 derived the complete steady-state PDF

of this equation, but it is piece-wise and difficult to interpret [109]. A minimalist

model proposed by Porporato et al. 2004 provides a good approximation of the com-

plete model, but has a much simpler steady-state PDF [98]. This model will now be

explained and the PDF derived.

First, an effective relative soil moisture, y, is defined that ranges between sw and

sl [98, 99]. It is assumed that due to rapid leakage at s > sl, the losses are infinite

and thus y can not exceed sl. Similarly, losses approach 0 at sw and thus y can not

descend below wilting point. Mathematically, y is represented as

y =
s− sw
sl − sw

(4.30)

such that at s = sw, y = 0 and at s = sl, y = 1, where sl is some soil moisture between

field capacity (sfc) and saturation (s = 1) [98, 99]. The new storage capacity of the

soil is defined as w0 = nZr(sl − sw) [98, 99]. When rainfall exceeds this storage

capacity it is assumed to runoff and/or leak out immediately. The system is governed

by the state equation

dy

dt
= I − E(y), (4.31)

where I is a jump process representing impulses of rain and E(y) are the losses

from evapotranspiration and leakage. Cumulative losses in the range of effective soil

moisture are assumed to be a linear function of y defined as

E(y) = ηy. (4.32)

Where η = ETmax/w0 is the normalized evapotranspiration. As in section 3.1.1, α
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is the mean depth of rainfall which is exponentially distributed. Similarly, λ is the

frequency of rainfall, where time between rainfalls is exponentially distributed. A new

dimensionless parameter, γ = w0/α, is defined as the inverse of normalized rainfall

depth. With these parameters the PDF of y can be solved for using a Kolmogorav

master equation with jumps [98, 99] to yield

pY (y) =
Cy

η
e−γyy

λ
η
−1. (4.33)

Where Cy is an integration constant such that the PDF integrates to unity. The

cumulative distribution function can be found by integrating pY (y) from 0 to y to

yield

PY (y) =
Cy

η

Γ(λ
η
)− Γ(λ

η
, γy)

γ
λ
η

. (4.34)

Now, the level crossing statistics (frequency and average duration) can be calculated

in the same way as was done for x in section 4.2.2. The dynamics of soil moisture

differ from x because x was forced with DMN, but y is forced with white shot noise

[99]. Because y only increases via these random pulses of rainfall that are assumed

to be instantaneous, the rate of upcrossing a threshold ε approaches infinity in the

model. Therefore equation 4.26 reduces to

vY (ε) = pY (ε)|E(ε)| (4.35)

where ρ(ε) = E(ε) is still the slope of the state equation at ε. The threshold of interest

is the oxic/anoxic transition, sc. In terms of effective soil moisture the equivalent yc

can be found using equation (4.30). From here, the general equation (4.28) can be

combined with the equations for y, (4.33), (4.34) and (4.35), to find the average
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duration of oxic conditions, τo. The equation for τo is

τo =
Γ(λ

η
)− Γ(λ

η
, γyc)

γ
λ
η e−γycy

λ
η
c η

. (4.36)

The average frequency of transitioning from oxic to anoxic (k1) can be written as

k1 =
1

τo
=

γ
λ
η e−γycy

λ
η
c η

Γ(λ
η
)− Γ(λ

η
, γyc)

. (4.37)

Similarly, the average frequency of transitioning from anoxic to anoxic can be found

using equation (4.29) to be

k2 =
Cyγ

λ
η eγycy

λ
η
c

γ
λ
η − (Γ(λ

η
)− Γ(λ

η
, γyc))

. (4.38)

The average total length of a redox cycle is the sum of the average length of excursion

below and above the oxic threshold, given by T = τo + τa. The total fraction of time

spent in anoxic conditions, f , is the given by the ratio f = τa/T , or the complementary

CDF f = 1− PY (yc) (equation (4.34)).

4.4 Quantifying Total Reduction

One of the motivations behind studying the iron cycle is to determine its role in

carbon decomposition and thus green house gas emissions. Ferric iron (Fe3+) is one

of the most important electron acceptors when oxygen is not available, and as such it

contributes greatly to the decomposition of organic matter under anoxic conditions [2,

51, 121]. A natural assumption is that the greater the prevalence of anoxic conditions,

the more iron is reduced in the decomposition of SOM. However, as explored in

Calabrese et al. 2020, the total iron reduction depends not only on the fraction of time

in anoxic conditions, but also the length of the redox cycles [21]. As anoxic conditions
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Figure 4.2: (a) shows the complete dynamics of s described in section 3.1 with parameters
α = 12mm and λ = 0.82 d−1 over a 100 day run. In (b) the shaded region shows the nor-
malized histogram of s after 10,000 days of simulation which approximates the numerically
derived steady-state PDF. The black line in (b) is the PDF of s derived from the simplified
soil moisture model using equation 4.33 with the same parameters. (c) shows the numerical
dynamics of x = Fe2+/Fetot driven by the soil moisture in (a) with ko = 1 and kr = 0.1 d−1.
The shaded region in (d) shows the normalized histogram after 10,000 days and the black
line shows the PDF prediction based off the simplified model and simplified soil moisture
model (equation (4.15)).
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persist, the available Fe3+ is used up and no longer available as an oxidant. Upon

switching to oxic conditions iron is rapidly oxidized, regenerating the pool of Fe3+ that

can be used in the next anoxic cycle [21]. In the 2020 paper, Calabrese et al. explore

the effects of constant length redox cycles on average rates of reduction. Here, this is

expanded to the stochastic case by assuming fluctuations follow DMN. The objective

of this section is to find the distribution and expected value of reduction rates using the

results from the PDF of x. In the simplified iron system, reduction is approximated

as a first order process using equation (4.3), rewritten here for convenience.

RED = krFe
3+ξ(t) = krFe

totξ(t)(1− x). (4.39)

Where Fetot = Fe2+ + Fe3+ is a constant, and ξ(t) is a random variable that is equal

to 1 in anoxic conditions and 0 in oxic conditions. Both sides pf equation (4.39) are

divided by Fetot and kr to get a normalized, dimensionless reduction rate, r:

r =
RED

Fetotkr
= (1− x)ξ(t). (4.40)

Conditioned on ξ = 1, the conditional distribution of r can be written

pR(r|ξ = 1) = pX(1− x|ξ = 1) =
pX(1− x, ξ = 1)

p(ξ = 1)
=

pR(r, ξ = 1)

p(ξ = 1)
. (4.41)

Where the third and fourth equalities come from the definition of a conditional dis-

tribution. The joint distribution p(x, 1) can be directly derived from equation (4.13)

to yield

p(x, 1) =
C

kr
xϕ(1− x)θ−1. (4.42)

Where C = Cxko has a dimension of 1/time and can be found from (4.17). The

integration constants take on importance when dealing with joint and marginal dis-

tributions because in a joint distribution integrating over the domain of just one
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variable will not integrate to one, one must integrate over both variables. The con-

stant C will be replaced with a new dimensionless constant of integration Cr such

that

Cr =
C

kr
= Cx

ko
kr

=
β

B(ϕ, θ)
[
1 + (β − 1) ϕ

ϕ+θ

] . (4.43)

The marginal distribution of r can be found by simply substituting in r = 1− x into

equation (4.42) to obtain

p(r, 1) = Cr(1− r)ϕrθ−1. (4.44)

Integrating r from 0 to 1 will yield the marginal distribution of ξ = 1 which is just

the fraction of time that the system is in anoxic conditions. The joint distribution

when ξ = 0 is given by

p(r, 0) = (1− f)δ(r). (4.45)

Where δ(r) is the Dirac delta or unit impulse function which is equal to one when

r = 0 and zero otherwise. Summing the joint probability distributions the marginal

PDF of r can be found to be

pR(r) = (1− f)δ(r) + Cr(1− r)ϕrθ−1. (4.46)

Substituting in for f and C (equation (4.17)), yields

pR(r) =
k2

k1 + k2
δ(r) +

β(1− r)ϕrθ−1

B(ϕ, θ)
[
1 + (β − 1) ϕ

ϕ+θ

] . (4.47)

The first term in (4.47) is the fraction of time in oxic conditions times an impulse

function at r = 0 and represents the fact that reduction is zero in oxic conditions. The

second term is a beta distribution with an area underneath equal to f = k1
k2+k1

and

is the distribution of normalized reduction during anoxic conditions. The expected
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Figure 4.3: The PDF of normalized reduction rate, pR(r), is plotted from equation (4.47).
At r = 0 is there is an atom of probability corresponding to oxic conditions. Parameters
used are ko, kr, k1, k2 = 1, 0.05, 1, 0.4, all in [1/day].

value (mean) of this distribution can be calculated to obtain

E[R] =

∫ 1

0

r′pR(r
′)dr′ =

βθϕ

(θ + ϕ+ 1)(θ + ϕ+ (β − 1)ϕ)
. (4.48)

Now that the PDF and expected value of the normalized variable, r, have been found,

the average reduction and decomposition rates can be found by un-normalizing

RED = rFetotkr. (4.49)

Now, assuming SOM is not limiting

DECFe = REDΩ = E[R]FetotkrΩ (4.50)

where Ω is the mass of carbon oxidized per gram of Fe3+ reduced, and DECFe is the

mass of carbon oxidized by iron in g/kg/day.

68



4.5 Average Protection Capacity

Similarly to reduction, the PDF of x can be used to derive the expected value of soil

protection capacity of carbon by reactive iron oxides. The protection capacity (PC)

in the complete model given in equation (3.20) as

PC = ωFe3+ = ωFetot(1− x). (4.51)

Because PC is a linear function of x, the expectation of PC is simply

E[PC] = ωFetot(1− E[x]), (4.52)

where the expectation of x is known from equation (4.23). The maximum protection

capacity is given by ωFetot. The PDF of % of maximum protection capacity is visible

by simply flipping the PDFs in figure 4.1 around the x = 0.5 line.

4.6 Results and Discussion

4.6.1 Overview

In this section the dynamics of the iron cycle driven by DMN switching between redox

states were solved at steady-state. This was done by first reducing the system to a

single variable, x, representing the fraction of reactive iron that is present as fe2+.

Then the problem was framed as an SDE (equation (4.6)) and solved in steady-state

using the forward Kolmogorav equation [102]. The steady-state PDF of x is given

by equation (4.16) and it was determined that three dimensionless parameters can

describe the system: β = ko/kr, ϕ = k1/ko, and θ = k2/kr.

To determine k1 and k2 from soil and hydrological parameters a minimalist soil
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Figure 4.4: Contour plots of the expected value of carbon that can be oxidized by iron
reduction for different hydrologic parameters. The constants used are ko = 1, kr = 0.02 d−1,
Fetot = 20 g/kg and the soil parameters found in table 3.2. Zr was adjusted from 0.4 to
0.8 m in plot (b). The x and y-axis on plot (a) are the mean duration of oxic periods,
τo = 1/k1, and anoxic periods, τa = 1/k2 respectively. The x and y-axis on plot (b) are the
frequency of rainfall λ in [1/day] and mean depth of rainfall α in mm. Level sets of total
annual rainfall for values of α and λ are shown for (b).

moisture model was employed with stochastic rainfall [98]. Using crossing time statis-

tics the mean duration of an oxic and anoxic period were determined, τo and τa re-

spectively. Since k1 = 1/τo and k2 = 1/τa the PDF of x can be directly linked to

hydrologic parameters such as rainfall depth, rain frequency, evapotranspiration, and

soil depth. Figure 4.2 shows that the simplified soil moisture model (black line in

(b)) and simplified stochastic model (black line in (d)) can estimate quite while the

complex system driven by the full soil moisture model.

The PDF of x was then used to investigate the potential of iron to be used as an

oxidant in different climates. This was done by finding the PDF and expectation of

the normalized reduction rate, r (equation (4.47)). In a similar manner the PDF of x

was used to determine the distribution and expectation of protection capacity, PC, of

carbon by iron oxides in the soil for a given pool of reactive iron and protection ratio, ω

(equation (4.51)). The hydrological parameters determine r and x, but ultimately kr,
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ω, and Fetot exert major control on both protection capacity and reduction capacity.

Figure 4.5: Contour plots of the average % of maximum protection capacity, equivalent
to Fetotω that is available from SROs. Mathematically it is (E[1−x]). %100 is entirely oxic
conditions when all iron is reduced and 0% is entirely anoxic conditions when no reactive
iron can protect carbon. (a) shows the effect of the average duration of anoxic and oxic
periods. (b) shows the impact of rainfall mean and duration. The constants used are ko = 1
and kr = 0.02 d−1 and the soil parameters found in table 3.2. Zr was adjusted from 0.4 to
0.8 m.

4.6.2 Implications

The PDF of iron (equation (4.16)) has two possible singularities. If k1/ko = ϕ < 1 the

PDF diverges at x = 0 and if k2/kr = θ < 1 the PDF diverges at x = 1. In words, this

means that if the redox conditions fluctuate faster than oxidation or reduction occur

(ϕ > 1 and θ > 1) then iron will most often be in an intermediate state with some

fraction reduced. If fluctuations are slower than the rate of oxidation or reduction,

then entirely oxidized or entirely reduced states will dominate. This makes ϕ = 1 and

θ = 1 thresholds where the qualitative behavior of the distribution changes. In non-

wetlands, oxic conditions usually dominate and k1 < k2. Oxidation is also typically

faster than reduction by up to several orders of magnitude, so ko > kr. This means

that in upland soils ϕ < 1 and θ > 1 which yields divergence at x = 0 and zero at
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x = 1. This corresponds to iron oxides dominating, not a surprising result [31, 127].

This effect is visible in the top-left plot in figure 4.1.

In the case where β ≈ 1, the expectation of x reduces to

E[x] ≈ ϕ

ϕ+ θ
. (4.53)

In words, this equations states that the average fraction of reduced iron increases

with the ratio of k1 (speed of leaving oxic conditions) to ko (rate of oxidation). It

also decreases with the ratio of k2 (speed of leaving anoxic conditions) to kr (rate of

reduction). Because reduction and oxidation can both vary by orders of magnitudes,

it is likely that even under similar hydrologic conditions the mean fraction of reduction

can be dramatically different.

The fraction of iron that is reduced is important for the ecological and pedogenic

iron cycle. Plant uptake of iron can only occur when iron is aqueous. Fe2+ is orders of

magnitudes more soluble than Fe3+ and thus the iron availability to plants depends

directly on x [28]. There are other strategies to obtain iron such as releasing acid into

the soil to dissolve it, but this requires the expenditure of resources by the plant [28].

Iron leaching in the soils also only occurs in the aqueous phase and as such a high

average x leads to high leaching values as seen in [127] and [147].

The fraction of ferrous iron plays a significant role in the carbon dynamics in wet

soils such as in rain forests or wetlands. Figure 4.4 shows the average daily CO2

emissions value in gC/kg/day from iron reduction alone given a soil with 20 g/kg

of reactive iron, non-limiting carbon inputs, and a reduction rate of kr = 0.02 d−1.

The significance of this is that iron is often the most energetically favourable oxidizer

in anoxic soils and so its presence can stimulate carbon mineralization under certain

conditions [12, 79]. Plot (a) in figure 4.4 shows the emissions from oxidation by iron

as a function of the average length of oxic and anoxic periods. As visible there is a

72



peak for anoxic periods between 2 and 10 days with short oxic periods. As the anoxic

periods get longer (τa increases) reduction decreases because iron becomes limiting.

The shape of the plot suggests that for given ko and kr values there is an optimal

trajectory that maximizes reduction. Calabrese et al. 2020 found that the limit

of maximum reduction rate per cycle in the case of constant length cycles occurs

as τa + τo → 0 [21]. This agrees with this thesis’ findings, but the reduction rate

used here is averaged over all conditions including oxic and as such has a different

maximum.

Plot (b) in figure 4.4 shows the same contours but as a function of rainfall fre-

quency and mean rainfall depth. As visible, with higher rainfall frequency a maximum

amount of reduction is achieved but beyond a certain level of rainfall the anoxic peri-

ods get too long and reduction decreases again. The bands in (b) show total annual

rainfall. For reference, rainforests are considered to begin at 2000 mm of rain per

year, with very few locations on Earth exceeding 6000 mm per year [55]. (b) is shown

for specific values of soil rooting depth, evapotranspiration, porosity, field capacity,

etc. and changing these properties can dramatically change the soil moisture and

thus redox dynamics [99]. The goal of displaying charts (a) and (b) together is to

connect soils in humid environments which undergo redox fluctuations due to rainfall

and soils which are flooded seasonally or perenially by natural or manmade causes

leading to longer redox cycles [147]. Both types of environments are critical stores

of soil carbon and their redox dynamics are often considered separately, however the

same fundamental processes are occuring in both [8, 16, 50, 59, 125, 134, 145].

Figure 4.5 shows the average fraction of maximum C protection capacity that is

available as a function of (an)oxic excursion times (a) and rainfall parameters (b).

This is a mirror of figure 4.4, in that is shows the role of iron as a protecting agent

rather than a catalyst of decomposition. As visible the protection capacity of the soil

increases with oxic conditions and decreases with anoxic conditions. The bottom left
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corner in (a), quickly fluctuating redox conditions, shows a high protection capacity.

In (b) only soils that are extremely wet, raining more than once a day on average

(λ > 1), is there a decrease in protective capacity. It is visible however, that under

extended anoxic conditions (high τa) it is expected that the protection capacity of

the soil decreases. This agrees with LaCroix et al. 2019 which found that reactive

iron content is correlated with carbon storage in upland soils (no extended anoxia)

but not correlated in seasonally flooded lowland soils [70]. Considering figures 4.4

and 4.5 together, extended periods of anoxia on the order of about ten or more days

would lead to iron reduction causing the release of MAOM and serving as an oxidant

– both effects increasing CO2 emissions. In a perennial wetland, however, iron would

be fully reduced and thus thermodynamic limitations would take over and suppress

decomposition (upper left corner (a) in figure 4.4).
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Table 4.1: List of variables used in chapter 4.

Variable Symbol Unit

Fraction of reactive iron as Fe2+ x
First order rate constant oxidation ko d−1

First order rate constant reduction kr d−1

Frequency of switching from oxic to anoxic k1 d−1

Frequency of switching from anoxic to oxic k2 d−1

DMN driving variable representing redox state ξ
Dimensionless parameter ko/kr β
Dimensionless parameter k1/ko ϕ
Dimensionless parameter k2/kr θ
Effective relative soil moisture y
Maximum effective soil moisture sl
Effective storage capacity of soil wo m
Normalized evapotranspiration η
Reciprocal of normalized rainfall depth γ
Mean depth of rainfall α (m)m
Mean frequency of rainfall λ d−1

Mean duration of oxic period τo d
Mean duration of anoxic period τa d
Fraction of time in anoxic f
Moisture threshold between anoxic and oxic sc (yc)
Normalized rate of reduction r
Carbon oxidation per iron reduction Ω gC/gFe
Carbon protection capacity of iron PC gC/kg
Carbon protection per unit of iron ω gC/gFe
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Chapter 5

Conclusion

5.1 Key Points

• Iron addition to soil can increase or decrease carbon emissions depending on the

ratio of the rates of reduction and oxidation to the speed of redox fluctuations.

• The interaction of the iron and carbon cycles depends heavily on the size of the

reactive pool of iron in the soil (Fetot).

• The results of short-term experiments on carbon emissions from mineral soils

should not be extrapolated to longer time frames.

• The novel PDF of the fraction of ferrous iron has many potential applications,

e.g. modeling the leaching of iron from soils or helping predict carbon protection

capacity.

• Under fast redox fluctuations, as in a humid upland soil, protection of carbon

from iron oxides is likely maintained, but iron can still be an important oxidant.
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5.2 Summary

The objective of this thesis was to untangle the hydrologic-iron-carbon cycles to

improve the current understanding of this complex system. Several studies have

investigated this issue by reviewing the mechanisms at play [36, 62, 118] and by

running experiments [23, 58, 88, 93, 134]. Modeling the system is difficult, however,

due to its complexity and sensitivity to local conditions. The simple model developed

here hones in on two effects that are independently well studied, but whose dynamics

have not yet been considered together in a model [22, 124]. The first effect is the role

of iron as an electron acceptor/oxidant, which stimulates the decomposition of SOM

in anoxic conditions [22, 28, 78, 125]. The second is the role of iron as a source of

protection for SOM via sorption or co-precipitation [66]. These two processes intersect

during the reduction of short-range iron oxides. These poorly crystalline minerals are

associated with global carbon protection but are also the most readily reducible due

to their high surface area [26, 66, 70, 101, 144]. Thus, the reactive pool of iron in the

soils is a double-edged sword and its net impact depends on redox fluctuations and

local conditions.

The numerical model developed in chapter 3 included pools for Fe3+, Fe2+, avail-

able carbon, and mineral-associated carbon. The iron and carbon cycles were coupled

by the reduction term, which reduces Fe3+ while oxidizing carbon to CO2, and by the

protection term, where the protection capacity of the soil was proportional to the

Fe3+ pool. The simulations of the model demonstrate that different conditions can

lead to contrasting effects on carbon decomposition. For instance, iron addition can

lead to greater CO2 emissions or less CO2 emissions depending on the length of oxic

versus anoxic conditions (figure 3.2). The kinetics of reduction were complicated by

a feedback effect wherein iron reduction freed carbon that then increased the rate of

iron reduction. The most important practical takeaway from these simulations is that
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timescales are of utmost importance. Experiments that observe decreases in carbon

emissions after ten or twenty days in anoxic conditions may simply not have had the

time for the release of carbon caused by iron reduction to have an effect, as seen in

[58]. The conundrum of time-scales is critical to global carbon storage efforts and un-

derstanding the mechanisms at play is a critical tool to predict long term greenhouse

gas emission from soil [81, 139].

Much of the past work in studying the role of redox cycles on iron has considered

redox cycles of constant length [21, 46, 88, 124]. In reality, redox cycles are driven

by rainfall, which is a pseduo-random process, or streamflow, which can have high

variability [109]. Thus, redox cycles are rarely truly of constant length. The goal

of chapter 4 was to analyze the iron cycle in a steady state assuming it is forced by

stochastic switches between redox conditions. Analytical solutions are desirable, as

they pose clear relations that are easy to visualize and interpret. To solve the system

analytically, it was simplified to a single SDE with a state variable x = Fe2+/Fetot,

where Fetot was assumed to be constant. The steady-state PDF of x and its mean

were derived as a function of four physical parameters: ko, kr, k1, and k2 which are the

rate of oxidation, the rate of reduction, the rate of switching from oxic to anoxic con-

ditions, and the rate of switching from anoxic to oxic conditions respectively. These

four parameters were reduced to three key dimensionless parameters that govern the

system: β = ko/kr, ϕ = k1/ko, and θ = k2/kr. A simplified soil moisture model was

then used to derive k1 and k2 from soil and rainfall variables. Taken together, this

allows one to find the PDF of x for any soil if its properties and the hydrologic con-

ditions are known. This can inform iron availability to plants and the amount of iron

leaching. Because reduction is a function of iron availability, the average reduction

rate and thus the average carbon oxidation rate by iron can be found (figure 4.4). For

the sample conditions used, it was found that average reduction would be maximized

if anoxic conditions are between two to ten days and oxic periods are short (figure
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4.4). If anoxic conditions are too long, iron limitations will reduce the average rate

of reduction. The PDF of x can also inform the average protection capacity of iron

in the soil, and it was found that protection remains near full under quickly fluctu-

ating redox conditions (e.g. rain forest soils), even when anoxic conditions are more

prevalent.

5.3 Limitations and Future Work

The primary limitation of this study is the simplified nature of the model used. Many

effects, including iron toxicity, fenton reactions, pH, microbial dynamics, alternate

electron acceptors, sorption effects on the rate of reduction, physical aggregation,

anoxic microsites, rhizosphere dynamics, and dynamic crystallization, were not con-

sidered [2, 23, 51, 56, 57, 62, 66, 67, 118, 124, 140]. Some of these effects, such as

microbial dynamics and pH, are included implicitly in the parameters of the model

but considered approximately static—which may or may not fundamentally change

the dynamics of the system. Future work should try to construct models that include

more effects while preserving interpretability.

The other limitation of this thesis is that the results were not fit to data, and

as such, the underlying structure of the model was not verified. Future work should

address this by fitting both the numerical model and the solutions of the stochastic

model to data. Possible starting points are data from experiments such as [88], [46],

[3], and [23]. The solutions to the stochastic model are parsimonious and, in theory,

can be applied to wetlands or soils around the world as long as their first order

reduction and oxidation rates (kr and ko) and hydrologic properties are known. If

in the future measurements of kr and ko for various soils become known, it will be

possible to test the results of the stochastic model.

Major uncertainties remain about the future of SOM under climate change [11,
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103, 123, 137]. A pressing question is the fate of the Gigatons of carbon stored in

soils and how changing temperature and precipitation patterns will affect it [123]. To

answer this question without decadal studies on the fate of carbon under different

soil conditions, models that accurately capture the mechanisms of conservation are

necessary. The emerging conception of mineral protection as an important factor in

stabilizing carbon needs to be further modeled to understand the consequences of

land use change and changes in precipitation [81, 139]. The iron cycle has varied

interactions with soil carbon storage, raising the critical questions of why, when, and

where the iron cycle will contribute to carbon storage in both positive and negative

ways. This thesis attempted to elucidate the role of key time scales, parameters, ini-

tial conditions, and stochasticity in the coupled hydrologic-iron-carbon cycle through

simple models. Future work should build on this modeling effort to improve our

understanding and of the ferrous wheel and its effect on the carbon cycle.
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Chapter 6

Appendix

6.1 Appendix A: Assumption of a Constant Reac-

tive Iron Pool.

The approximation of constant reactive iron is reasonable given that the rate of

leaching from soils (dFe
tot

dt
) is significantly lower in most conditions than the rate of

reduction and oxidation. Data from Thompson et al. 2011 on iron along a rainfall

gradient in Hawaii suggests a leaching rate on the order of 1 × 10−5 g kg−1 d−1 at

4200mm of rain per year [127]. At the high end of global rainfall, this ecosystem

gives an approximate upper bound on leeching in upland soils exposed to heavy

rain. Another paper by Chen et al. 2022 estimating iron leaching from paddy soils

in China, where flooding creates ideal leaching conditions, found a maximum rate of

leaching within the first decades of irrigating an upland soil to be on the order of 10−3

g/kg/day [27]. The sudden flooding of upland soils should give a good upper bound

on maximum possible leaching in any natural soil. The leaching of Fe2+ is thought

to encourage the dissolution of more stable and crystalline iron oxides, increasing

the pool of readily reducible iron oxides [106, 127]. Thus even when leaching is non-

negligible, this process helps maintain a quasi steady pool of reactive iron [106, 127].
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Figure 6.1: (a) The distribution of the duration of anoxic period, ta, with mean τa. (b) The
distribution of the duration of anoxic period, to, with mean τo. The histograms come from
the crossing times of a 10,000 day simulation with parameters α = 12mm and λ = 0.82 d−1.

6.2 Appendix B: Assumption of Exponential Cross-

ing Times

In making the assumption that the system is driven by DMN, it was implicitly as-

sumed that crossing times are Markovian, i.e. the time until crossing does not depend

on the previous time until crossing and is equally likely at any point in time. This

assumption would lead crossing times to be exponentially distributed. In actuality

and in the model of soil moisture used the crossing times are not completely random

but are in fact driven by both the stochastic rain inputs and deterministic soil mois-

ture dynamics. k1 and k2 were derived from soil moisture dynamics by taking the

recipricol of the mean excursion time below and above the oxic threshold, E[to] = τo

and E[ta] = τa respectively. This gives the correct average value, however knowing

the expected values does not imply that the excursion times to and ta are exponen-

tially distributed, this must be verified separately. Figure 6.1 shows the distribution
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of duration of excursions in anoxic (a) and oxic (b) over 10,000 days. The numerical

simulation was run using the complete soil moisture model (section 3.1). The mean

value of soil moisture is taken from the simulation and plotted as an exponential curve

(blue line). The simplified soil moisture model was also used to predict crossing times

using equation (4.36) and an exponential distribution was plotted (red line). As vis-

ible in (a) both exponential fits overestimate the proportion of short excursions into

anoxic conditions and underestimate the amount of excursions around 3 days long.

In (a) the numerical mean has a better fit as it has a larger mean than the simplified

analytical prediction. In (b) the exponential curves have a good fit and both the

predicted mean and the numerical mean provide good approximations. These results

suggest that an exponential distribution of crossing times and thus DMN is an okay

assumption for the switches between oxic and anoxic conditions.

83



Bibliography

1. Abramowitz, M. Handbook of mathematical functions : with formulas, graphs,
and mathematical tables English (ed Stegun, I. A.) isbn: 978-0-486-61272-0
(New York: Dover Publications, 1965).

2. Achtnich, C., Bak, F. & Conrad, R. Competition for electron donors among ni-
trate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic
paddy soil. en. Biology and Fertility of Soils 19, 65–72. issn: 1432-0789 (Jan.
1995).

3. Adhikari, D. et al. Dynamics of ferrihydrite-bound organic carbon during mi-
crobial Fe reduction. Geochimica et Cosmochimica Acta 212, 221–233. issn:
0016-7037 (Sept. 2017).

4. Agren, G. I. & Bosatta, E. Theoretical Ecosystem Ecology: Understanding El-
ement Cycles en. isbn: 978-0-521-64651-2 (Cambridge University Press, July
1998).

5. Amstaetter, K., Borch, T. & Kappler, A. Influence of humic acid imposed
changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica
et Cosmochimica Acta 85, 326–341. issn: 0016-7037 (May 2012).

6. Bailey, V. L., Pries, C. H. & Lajtha, K. What do we know about soil carbon
destabilization? en. Environmental Research Letters 14. 083004. issn: 1748-
9326 (July 2019).

7. Barcellos, D., Cyle, K. T. & Thompson, A. Faster redox fluctuations can lead
to higher iron reduction rates in humid forest soils. en. Biogeochemistry 137,
367–378. issn: 1573-515X (Feb. 2018).

8. Barcellos, D., O’Connell, C. S., Silver, W., Meile, C. & Thompson, A. Hot
Spots and Hot Moments of Soil Moisture Explain Fluctuations in Iron and
Carbon Cycling in a Humid Tropical Forest Soil. en. Soil Systems 2. 59. issn:
2571-8789 (Dec. 2018).

9. Barros, N. Thermodynamics of Soil Microbial Metabolism: Applications and
Functions. en. Applied Sciences 11. 4962. issn: 2076-3417 (Jan. 2021).

10. Benner, S. G., Hansel, C. M., Wielinga, B. W., Barber, T. M. & Fendorf, S.
Reductive Dissolution and Biomineralization of Iron Hydroxide under Dynamic
Flow Conditions. Environmental Science & Technology 36. 1705–1711. issn:
0013-936X (Apr. 2002).

11. Berardi, D. et al. 21st-century biogeochemical modeling: Challenges for Century-
based models and where do we go from here? en. GCB Bioenergy 12. 774–788.
issn: 1757-1707 (2020).

84



12. Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q. & Flynn, T. M. The
thermodynamic ladder in geomicrobiology. American Journal of Science 311,
183–210. issn: 0002-9599 (Mar. 2011).

13. Beven, K. A manifesto for the equifinality thesis. Journal of Hydrology. The
model parameter estimation experiment 320, 18–36. issn: 0022-1694 (Mar.
2006).

14. Beven, K. en. in Computer Simulation Validation: Fundamental Concepts, Method-
ological Frameworks, and Philosophical Perspectives (eds Beisbart, C. & Saam,
N. J.) 791–809 (Springer International Publishing, Cham, 2019). isbn: 978-3-
319-70766-2.

15. Beven, K. & Freer, J. Equifinality, data assimilation, and uncertainty esti-
mation in mechanistic modelling of complex environmental systems using the
GLUE methodology. Journal of Hydrology 249, 11–29. issn: 0022-1694 (Aug.
2001).

16. Bhattacharyya, A. et al. Redox Fluctuations Control the Coupled Cycling of
Iron and Carbon in Tropical Forest Soils. Environmental Science & Technology
52. 14129–14139. issn: 0013-936X (Dec. 2018).

17. Bloomfield, J., Vogt, K. A. & Vogt, D. J. Decay rate and substrate quality of
fine roots and foliage of two tropical tree species in the Luquillo Experimental
Forest, Puerto Rico. en. Plant and Soil 150, 233–245. issn: 1573-5036 (Mar.
1993).

18. Bonneville, S., Behrends, T., Cappellen, P. V., Hyacinthe, C. & Röling, W. F. M.
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82. Lützow, M. v. et al. Stabilization of organic matter in temperate soils: mecha-
nisms and their relevance under different soil conditions – a review. en. Euro-
pean Journal of Soil Science 57. 426–445. issn: 1365-2389 (2006).

83. Manzoni, S., Katul, G. & Porporato, A. A dynamical system perspective on
plant hydraulic failure. Water Resources Research 50. 5170–5183 (2014).

84. Manzoni, S. & Porporato, A. Soil carbon and nitrogen mineralization: Theory
and models across scales. en. Soil Biology and Biochemistry 41, 1355–1379.
issn: 00380717 (July 2009).

85. Marquart, K. A. et al. Influence of pH on the balance between methanogenesis
and iron reduction. en. Geobiology 17. 185–198. issn: 1472-4669 (2019).

86. Megonigal, J. P. & Guenther, A. B. Methane emissions from upland forest soils
and vegetation. Tree Physiology 28, 491–498. issn: 0829-318X (Apr. 2008).

87. Mentges, A., Feenders, C., Deutsch, C., Blasius, B. & Dittmar, T. Long-term
stability of marine dissolved organic carbon emerges from a neutral network
of compounds and microbes. en. Scientific Reports 9. 17780. issn: 2045-2322
(Nov. 2019).

89



88. Mikutta, C. et al. Redox cycling of straw-amended soil simultaneously increases
iron oxide crystallinity and the content of highly disordered organo-iron(III)
solids. Geochimica et Cosmochimica Acta. issn: 0016-7037 (Feb. 2024).

89. Mikutta, R., Lorenz, D., Guggenberger, G., Haumaier, L. & Freund, A. Proper-
ties and reactivity of Fe-organic matter associations formed by coprecipitation
versus adsorption: Clues from arsenate batch adsorption. Geochimica et Cos-
mochimica Acta 144, 258–276. issn: 0016-7037 (Nov. 2014).

90. Notini, L. et al. A Closer Look at Fe(II) Passivation of Goethite. ACS Earth
and Space Chemistry 3. 2717–2725 (Dec. 2019).

91. Olson, J. S. Energy Storage and the Balance of Producers and Decomposers in
Ecological Systems. Ecology 44. 322–331. issn: 0012-9658 (1963).

92. Ostwald, W. Ostwald ripening. Physical Chemistry 34, 495–503 (1900).
93. Pan, W., Kan, J., Inamdar, S., Chen, C. & Sparks, D. Dissimilatory microbial

iron reduction release DOC (dissolved organic carbon) from carbon-ferrihydrite
association. Soil Biology and Biochemistry 103, 232–240. issn: 0038-0717 (Dec.
2016).

94. Parnas, H. A theoretical explanation of the priming effect based on microbial
growth with two limiting substrates. Soil Biology and Biochemistry 8, 139–144.
issn: 0038-0717 (Jan. 1976).

95. Patzner, M. S. et al. Iron mineral dissolution releases iron and associated or-
ganic carbon during permafrost thaw. en. Nature Communications 11. 6329.
issn: 2041-1723 (Dec. 2020).

96. Plazinski, W., Rudzinski, W. & Plazinska, A. Theoretical models of sorption
kinetics including a surface reaction mechanism: A review. Advances in Colloid
and Interface Science 152, 2–13. issn: 0001-8686 (Nov. 2009).

97. Porporato, A., D’Odorico, P., Laio, F. & Rodriguez-Iturbe, I. Hydrologic con-
trols on soil carbon and nitrogen cycles. I. Modeling scheme. en. Advances in
Water Resources 26, 45–58. issn: 03091708 (Jan. 2003).

98. Porporato, A., Daly, E. & Rodriguez-Iturbe, I. Soil Water Balance and Ecosys-
tem Response to Climate Change. The American Naturalist 164. 625–632.
issn: 0003-0147 (Nov. 2004).

99. Porporato, A. & Yin, J. Ecohydrology isbn: 978-1-108-84054-5 (Cambridge
University Press, 2022).

100. Powers, J. S. et al. Decomposition in tropical forests: a pan-tropical study of
the effects of litter type, litter placement and mesofaunal exclusion across a
precipitation gradient. en. Journal of Ecology 97. 801–811. issn: 1365-2745
(2009).

101. Rasmussen, C. et al. Beyond clay: towards an improved set of variables for
predicting soil organic matter content. en. Biogeochemistry 137, 297–306. issn:
1573-515X (Feb. 2018).

102. Ridolfi, L., D’Odorico, P. & Laio, F. Noise-Induced Phenomena in the Environ-
mental Sciences isbn: 978-0-521-19818-9 (Cambridge University Press, 2011).

103. Riley, W. J. et al. en. in Multi-Scale Biogeochemical Processes in Soil Ecosys-
tems 233–257 (John Wiley & Sons, Ltd, 2022). isbn: 978-1-119-48041-9.

90



104. Roden, E. E. Fe(III) Oxide Reactivity Toward Biological versus Chemical Re-
duction. Environmental Science & Technology 37. 1319–1324. issn: 0013-936X
(Apr. 2003).

105. Roden, E. E. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduc-
tion kinetics1. Geochimica et Cosmochimica Acta. A Special Issue on Microbial
Geochemistry 68, 3205–3216. issn: 0016-7037 (Aug. 2004).

106. Roden, E. E. Geochemical and microbiological controls on dissimilatory iron
reduction. Comptes Rendus Geoscience. Les hydroxydes ferrosiques, les rouilles
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